Lateo.net - Flux RSS en pagaille (pour en ajouter : @ moi)

🔒
❌ À propos de FreshRSS
Il y a de nouveaux articles disponibles, cliquez pour rafraîchir la page.
Hier — 18 mars 2024Raspberry Pi

Season 6 of the Hello World podcast is here

Through the Hello World podcast, we help to connect computing educators around the world and share their experiences. In each episode, we expand on a topic from a recent Hello World magazine issue. After 5 seasons, and a break last year, we are back with season 6 today.

Hello World logo.

Episode 1: Do kids still need to learn how to code?

In the recent ‘Teaching & AI’ issue of Hello World, our CEO Philip Colligan discussed what AI means for computing education, including for learning to program. And our first new podcast episode is all about this question, which every computing educator has probably thought about at least once in recent months: Do kids still need to learn how to code?

Joining my co-host Veronica and me are two computing educators: Pete Dring, Head of Computing at Fulford School in York, and Chris Coetzee, a computer science teacher for 24 years and currently a PhD student in Computer Science Education at Abertay Dundee. Given the recent developments in AI-based code generators, we talk about whether such tools will remove our learners’ need to learn to code or simply change what coding, and learning to code, looks like*.

What’s coming up in future episodes?

New episode of season 6 will come out every 2 weeks. In each episode we explore computing, coding, and digital making education by delving into an exciting topic together with our guests: experts, practitioners, and other members of the Hello World community.

Also in season 6, we’ll explore:

The role of computing communities

We discuss the value and importance of being connected to other computing educators through the many different teaching communities that exist around the world. What makes effective communities, and how do we build and sustain them?

A group of students and a teacher at the Coding Academy in Telangana.

Why is understanding cybersecurity so important?

From classroom lessons to challenges and competitions, there are lots of opportunities for learners to discover cybersecurity. There are also many pitfalls where learners’ online activities put them at risk of breaking the law. We discuss some of these pitfalls along with the many career opportunities in cybersecurity.

How to develop as a computing educator?

What is involved in becoming an effective computing educator? What knowledge, skills, and behaviours are needed, and how do we go about developing them? We sit down with teacher trainers and trainees to explore this topic.

Two learners and a teacher in a physical computing lesson.

What is the state of computing education and where is it heading?

Computing education has come a long way in the last decade in terms of practice and policy, as well as research. Together with our guests we discuss where computing education is today around the world, and we consider the lessons we can learn and the challenges ahead

What is the role of AI in your classroom?

AI continues to be a disruptive technology in many spaces, and the classroom is no exception. We hear examples of practices and approaches being explored by teachers in the classroom.

Listen and subscribe today

If you’ve not listened to the Hello World podcast yet, there are 5 whole seasons for you to discover. We talk about everything from ecology and quantum computing to philosophy, ethics, and inclusion, and our conversations always focus on the practicalities of teaching in the classroom.

In our latest issue of Hello World, we feature authors from over 20 countries.

Many of our podcast guests are Hello World authors, so if you’re an educator who wants to share your insights into how to teach young people about digital technology, please let us know. Your words could end up in the pages as well as on the airwaves of Hello World.

You’ll find the upcoming Hello World season and past episodes on your favourite podcast platform, including YouTube now, where you can also subscribe to never miss an episode. Alternatively, you can listen here via your browser.

* If you want to dive into the newest research on programming education with and without AI, check out our current seminar series.

The post Season 6 of the Hello World podcast is here appeared first on Raspberry Pi Foundation.

À partir d’avant-hierRaspberry Pi

Fostering collaboration in the Global Clubs Partner network

We partner with educational organisations around the world to bring coding activities to young people in their regions through Code Club and CoderDojo. Currently involving 52 organisations in 41 countries, this Global Clubs Partner network shares our passion for empowering kids to create with technology.

Students in a Code Club run by CSEd Botswana.
Learners in a Code Club run by CSEd Botswana, one of our Global Clubs Partners.

A key aspect of how we foster the Global Clubs Partner network is to promote connections between partners. It’s one reason we host regular online meetings and regional in-person events, and connect partners one on one to facilitate information sharing. Today, we’re highlighting three stories from partner organisations that have benefited from working with each other.

Aruba and the Netherlands

In March 2023, the Foundation hosted the first Clubs Conference for educators and volunteers involved with Code Club and CoderDojo. As this event took place in Cambridge, UK, the majority of attendees were from the UK and Republic or Ireland, but a small number came from further away. Much further away, in some cases.

A panel discussion on stage at the Clubs Conference.

Bruce Harms and his colleague Thanya Croes (Full Stack Vision Foundation, Aruba) were attending the Clubs Conference to share their work to increase digital literacy in Aruba through CoderDojo clubs. At a special conference session for international attendees, they connected with Sanneke van der Meer and Marloes van der Meulen (CoderDojo Netherlands), who were also presenting as part of the session.

Two people smiling at the camera.
Thanya and Bruce at the Clubs Conference in 2023.

After the Clubs Conference, the two organisations remained in touch. Later in the year, Bruce and Thanya attended the DojoCon Netherlands 2023 in the Hague. ”It was an amazing day with great workshops and lots of other CoderDojo Champions”, Bruce said. He and Thanya have plans to invite the CoderDojo Netherlands team to Aruba and hope to collaborate on future projects together. 

Malawi and Tanzania

Sylvester Mtumbuka (Computers for Enhanced Education, Malawi) and Mrisho Habibu (AMCET Innovation Hub, Tanzania) first connected at our Global Clubs Partner meetup in Malaysia in late 2022. Sylvester said: “We were the only ones from Africa there and we are from neighbouring countries. We happen to have a lot of goals in common, and we started discussing possible opportunities for collaboration.”

A group of educators.
The attendees of the Global Clubs Partner meetup in Malaysia in 2022.

The result is the Tanzania and Malawi (TaMa) Innovation Initiative, which is dedicated to fostering the educational, technological, and entrepreneurial development of young people in Tanzania and Malawi. It aims to empower young people in under-served communities, offering support for sustainable livelihoods and entrepreneurship, and it is already yielding great results.

Global Clubs Partners in Africa.
Sylvester and Mrisho signing their partnership agreement.

As part of their ongoing partnerships with us, Sylvester and Mrisho attended our Global Clubs Partner meetup in South Africa a year later —  the perfect opportunity to sign their partnership agreement.

Greece and Portugal

A chance meeting between Homero Cardoso (TAGUSVALLEY, Portugal) and Manos Zeakis (CoderDojo in Greece) at DojoCon Netherlands 2022 in Almere had unexpected consequences. “We discussed a lot of things, including the difficulty in finding venues for our Dojos in Greece”, Manos said. “Then in October 2023, we met at a Global Clubs Partner call and we talked again. With Homero’s help I contacted a Greek company, and they were immediately enthusiastic about helping us. After a few weeks, the Nea Ionia Dojo was live and the first Ninjas had their first session!”

Someone presenting to a room of people.
Manos holds a workshop.

Homero added: “Getting to know Manos was transformative for me as well. Because of that chance encounter in Almere, this year 7th and 8th grade students are participating in Astro Pi Mission Zero for the first time, mostly due to the inspiring example of Manos’s United Dojos project presented at DojoCon.”

Could your organisation become a Global Clubs Partner?

To find out more about our Global Clubs Partner network and how your organisation might get involved, visit the CoderDojo or Code Club websites, or contact us directly about a partnership.

The post Fostering collaboration in the Global Clubs Partner network appeared first on Raspberry Pi Foundation.

Black role models in tech are making history every day

It’s the last week of Black History Month 2024 in the USA, but by no means is the celebration over. The beautiful thing about history is that it’s not an isolated narrative about the past, but an ongoing dialogue in which we talk about how our collective past informs our present, and what more can be achieved in the future. The fact is this: we make history every single day. That’s why it’s so important for everyone to actively engage with history, and for us to celebrate the achievements of all.

A young person with their project at a Coolest Projects event.

When we talk about the history of STEM and computing, it’s necessary to highlight the achievements of people from groups that are still underrepresented in these fields: communities of colour, female and gender non-conforming people, people with disabilities, and underresourced communities. When we highlight their achievements, everyone can gain a fuller understanding of this history, and more young people from these groups can see they have a place in these fields and in moving them forward. 

[When young kids of colour help inform the technology they use,] we end up with technology that is more inclusive to diverse communities […], and we help the kids become creators instead of just consumers.

Qumisha Goss

So to keep the conversation going about Black history in STEM and computing and how people make it every day, today we’re highlighting stories of Black community members. You’ll find out how they got involved in coding and creating with technology, and who their Black role models in tech are — past and present.

Community spotlight: Qumisha Goss

Meet Qumisha Goss, a brilliant source of inspiration and a shining light for youth in the ‘Motor City’ of Detroit, Michigan, USA.

A smiling woman.

Growing up, Qumisha always had an interest in tech, often tinkering and putting projects together, and her interest quickly transformed into a dream of becoming an engineer one day. Fast forward to now, and Qumisha has done exactly that and so much more.

She’s the Interim Executive Director of Peer 2 Peer University, the Digital Literacy Subject Matter Expert for Connect 313, the Creator and Lead Instructor of Code Grow, and a Raspberry Pi Certified Educator. Talk about impact! We asked Qumisha a few questions to explore her incredible story and to learn how she’s giving back to her community today: 

Which Black individuals have helped pave the way for you?

Qumisha: “When I was a kid, my grandmas, Gloria and Cassandra, helped my brother and I make a shrinking machine out of a cardboard box, some batteries, and some lights. There was a minimum of science used, but my grandma swapped out our test ear of corn for a baby corn and my curiosity was rewarded with success. In elementary school, my ‘hero’ was Mae Carol Jemison, engineer, doctor, and astronaut. She was the first African American woman to go to space, in 1992 on the Endeavor. I found someone who looked like me who was doing something that I wanted to do, and that was encouraging.”

Two young people using laptops at a Code Club session.

Why is it important to encourage diversity in tech?

Qumisha: “It’s important that young kids of colour help inform the technology that they use. The benefits are twofold: we end up with technology that is more inclusive to diverse communities because it is informed by them, and we help the kids become creators instead of just consumers.”

How did you find your way into tech?

Qumisha: “I eventually went to college to study engineering. I ended up switching majors and studying history and classical languages, but later returned to the tech world when I joined the Python and Raspberry Pi communities. I learned how to code outside of a traditional classroom and have been running physical computing classes and workshops for kids in my hometown of Detroit.”

A Coolest Projects participant

How do you believe your work is paving the way for more Black excellence in tech?

Qumisha: “Even if kids don’t stick with it, they learn that coding — and lots of things — are not beyond them. The next Bill Gates might be sitting on the library stoop. The difference between them being able to make it or not is: ‘Did they ever get the opportunity to touch the thing that really sparks their genius?’ And for me, I want to help as many kids as possible interact with tech in a fun and engaging way so that they know that they can be technologists too.”

The difference between [kids] being able to make it or not is: ‘Did they ever get the opportunity to touch the thing that really sparks their genius?’

Qumisha Goss

To connect with Qumisha and learn how you can support the incredible, history-making work that she’s doing, follow her on X at @QatalystGoss.

Keep reading to meet more Black history makers across the USA, and to find resources to learn how you can help increase diversity in the technology sector in your community.  

Ways to continue celebrating Black history

Explore our research seminars for educators who want to learn how to make computer science more accessible to all.

Listen to the stories of other Black community members who are making history all over the US. Siblings Sophia and Sebastian, researcher Randi Williams, and aspiring filmmaker Jordan chatted to us about their interest in coding, tech, and getting creative with digital tools.

At Coolest Projects, a group of people explore a coding project.

Try out one of our guided projects for young people to get creative with tech. Check out Coolest Projects, our free online showcase for young tech creators, and how you can get young people involved

And if you want to share the story of how you got into tech and how you’re inspiring kids to do the same, reach out to us on social media so we can amplify your voice. 

Happy Black History Month!

The post Black role models in tech are making history every day appeared first on Raspberry Pi Foundation.

Hello World #23 out now: Global exchange of computing education ideas

Par : Meg Wang

How is computing taught around the globe? Our brand-new, free issue of Hello World, out today, paints a picture for you. It features stories from over 20 countries, where educators, researchers, and volunteers share their work and their personal challenges and joys in bringing computing education to their part of the world.

The Hello World Global Exchange magazine cover on a plain background.

Global exchange in a worldwide community

In Hello World issue 23, you’ll hear about countries where computing is an official school subject and how it was set up that way, and you’ll hear about countries that are newer to computing education and working to fast-track their students’ learning.

  • Ethel Tshukudu’s article on her research using the CAPE framework is a fascinating comparison of computer science education in four African countries
  • Iliana Ramirez describes how volunteers are at the heart of Ciberistas, a technology training programme for young people in Mexico
  • Matthew Griffin’s article highlights how computing education works in Canada, a large country with two official languages
  • Dana Rensi’s article about a solar-powered Raspberry Pi computing lab in the middle of the Peruvian rainforest will surprise and delight you
  • Randal Rousseau, a librarian in Cape Town, South Africa, shares how he teaches children to code through unplugged activities

And there is lots more for you to discover in issue 23.

Sue Sentance, director of the Raspberry Pi Computing Education Research Centre at the University of Cambridge, says in her article:

“Our own experience of implementing computing education in England since 2014 has shown the importance of teachers supporting each other, and how various networks … are instrumental in bringing computing teachers together to share knowledge and experiences. With so many countries introducing computing education, and teachers around the globe facing similar challenges, maybe we need to extend this to a global teacher network, where teachers and policymakers can share good practice and learn from each other. “

We aim for Hello World magazine to be one of the places where this sharing, exchange, and learning can take place. Subscribe for free to never miss an issue, and find out how you can write for the magazine.

Download Hello World issue 23 for free

Research highlights the importance of computing education to young people’s futures, whether or not they pursue a degree or career in the area. From teaching computing in schools where the electricity cuts out, to incorporating artificial intelligence into curricula in different countries, and to teaming up with local governments when there isn’t a national computing curriculum, educators are doing wonderful things around the globe to make sure the young people they support have the opportunity to learn. Read their stories today.

Also in issue 23:

  • Research on culturally adapted resources 
  • How community building enhances computing education
  • Tips for hosting a STEM event in school

And much, much more.

Send us a message or tag us on social media to let us know which articles have made you think, and most importantly, which will help you with your teaching. And to hear monthly news about Hello World and the whole Raspberry Pi Foundation, sign up to the Hello World newsletter.

The post Hello World #23 out now: Global exchange of computing education ideas appeared first on Raspberry Pi Foundation.

Supporting learners with programming tasks through AI-generated Parson’s Problems

The use of generative AI tools (e.g. ChatGPT) in education is now common among young people (see data from the UK’s Ofcom regulator). As a computing educator or researcher, you might wonder what impact generative AI tools will have on how young people learn programming. In our latest research seminar, Barbara Ericson and Xinying Hou (University of Michigan) shared insights into this topic. They presented recent studies with university student participants on using generative AI tools based on large language models (LLMs) during programming tasks. 

A girl in a university computing classroom.

Using Parson’s Problems to scaffold student code-writing tasks

Barbara and Xinying started their seminar with an overview of their earlier research into using Parson’s Problems to scaffold university students as they learn to program. Parson’s Problems (PPs) are a type of code completion problem where learners are given all the correct code to solve the coding task, but the individual lines are broken up into blocks and shown in the wrong order (Parsons and Haden, 2006). Distractor blocks, which are incorrect versions of some or all of the lines of code (i.e. versions with syntax or semantic errors), can also be included. This means to solve a PP, learners need to select the correct blocks as well as place them in the correct order.

A presentation slide defining Parson's Problems.

In one study, the research team asked whether PPs could support university students who are struggling to complete write-code tasks. In the tasks, the 11 study participants had the option to generate a PP when they encountered a challenge trying to write code from scratch, in order to help them arrive at the complete code solution. The PPs acted as scaffolding for participants who got stuck trying to write code. Solutions used in the generated PPs were derived from past student solutions collected during previous university courses. The study had promising results: participants said the PPs were helpful in completing the write-code problems, and 6 participants stated that the PPs lowered the difficulty of the problem and speeded up the problem-solving process, reducing their debugging time. Additionally, participants said that the PPs prompted them to think more deeply.

A young person codes at a Raspberry Pi computer.

This study provided further evidence that PPs can be useful in supporting students and keeping them engaged when writing code. However, some participants still had difficulty arriving at the correct code solution, even when prompted with a PP as support. The research team thinks that a possible reason for this could be that only one solution was given to the PP, the same one for all participants. Therefore, participants with a different approach in mind would likely have experienced a higher cognitive demand and would not have found that particular PP useful.

An example of a coding interface presenting adaptive Parson's Problems.

Supporting students with varying self-efficacy using PPs

To understand the impact of using PPs with different learners, the team then undertook a follow-up study asking whether PPs could specifically support students with lower computer science self-efficacy. The results show that study participants with low self-efficacy who were scaffolded with PPs support showed significantly higher practice performance and higher problem-solving efficiency compared to participants who had no scaffolding. These findings provide evidence that PPs can create a more supportive environment, particularly for students who have lower self-efficacy or difficulty solving code writing problems. Another finding was that participants with low self-efficacy were more likely to completely solve the PPs, whereas participants with higher self-efficacy only scanned or partly solved the PPs, indicating that scaffolding in the form of PPs may be redundant for some students.

Secondary school age learners in a computing classroom.

These two studies highlighted instances where PPs are more or less relevant depending on a student’s level of expertise or self-efficacy. In addition, the best PP to solve may differ from one student to another, and so having the same PP for all students to solve may be a limitation. This prompted the team to conduct their most recent study to ask how large language models (LLMs) can be leveraged to support students in code-writing practice without hindering their learning.

Generating personalised PPs using AI tools

This recent third study focused on the development of CodeTailor, a tool that uses LLMs to generate and evaluate code solutions before generating personalised PPs to scaffold students writing code. Students are encouraged to engage actively with solving problems as, unlike other AI-assisted coding tools that merely output a correct code correct solution, students must actively construct solutions using personalised PPs. The researchers were interested in whether CodeTailor could better support students to actively engage in code-writing.

An example of the CodeTailor interface presenting adaptive Parson's Problems.

In a study with 18 undergraduate students, they found that CodeTailor could generate correct solutions based on students’ incorrect code. The CodeTailor-generated solutions were more closely aligned with students’ incorrect code than common previous student solutions were. The researchers also found that most participants (88%) preferred CodeTailor to other AI-assisted coding tools when engaging with code-writing tasks. As the correct solution in CodeTailor is generated based on individual students’ existing strategy, this boosted students’ confidence in their current ideas and progress during their practice. However, some students still reported challenges around solution comprehension, potentially due to CodeTailor not providing sufficient explanation for the details in the individual code blocks of the solution to the PP. The researchers argue that text explanations could help students fully understand a program’s components, objectives, and structure. 

In future studies, the team is keen to evaluate a design of CodeTailor that generates multiple levels of natural language explanations, i.e. provides personalised explanations accompanying the PPs. They also aim to investigate the use of LLM-based AI tools to generate a self-reflection question structure that students can fill in to extend their reasoning about the solution to the PP.

Barbara and Xinying’s seminar is available to watch here: 

Find examples of PPs embedded in free interactive ebooks that Barbara and her team have developed over the years, including CSAwesome and Python for Everybody. You can also read more about the CodeTailor platform in Barbara and Xinying’s paper.

Join our next seminar

The focus of our ongoing seminar series is on teaching programming with or without AI. 

For our next seminar on Tuesday 12 March at 17:00–18:30 GMT, we’re joined by Yash Tadimalla and Prof. Mary Lou Maher (University of North Carolina at Charlotte). The two of them will share further insights into the impact of AI tools on the student experience in programming courses. To take part in the seminar, click the button below to sign up, and we will send you information about joining. We hope to see you there.

The schedule of our upcoming seminars is online. You can catch up on past seminars on our previous seminars and recordings page.

The post Supporting learners with programming tasks through AI-generated Parson’s Problems appeared first on Raspberry Pi Foundation.

Registration is open for Coolest Projects 2024

Big news for young coders and everyone who supports them: project registration is now open for Coolest Projects 2024! Coolest Projects is our global technology showcase for young people aged up to 18. It gives young creators the incredible opportunity to share the cool stuff they’ve made with digital technology with a global audience, and receive certificates and rewards to celebrate their achievements.

A young coder shows off her tech project Five young coders show off their robotic garden tech project for Coolest Projects to two other young tech creators.

What you need to know about Coolest Projects

The Coolest Projects online showcase is open to young people worldwide. Young creators can register their projects to share them with the world in our online project gallery, and join our exciting livestream event to celebrate what they have made with the global Coolest Projects community.

Four young coders show off their tech project for Coolest Projects.

By taking part in Coolest Projects, young people can join an international community of young makers, represent their country, receive personalised feedback on their projects, and get certificates and more to recognise their achievements.

Here’s how it works:

  • Coolest Projects is completely free to take part in!
  • All digital technology projects are welcome, from very first projects to advanced builds, and the projects don’t have to be complete
  • Projects can be registered in one of six categories: Scratch, games, web, mobile apps, hardware, and advanced programming
  • Young creators up to age 18 can take part individually or in teams of up to five friends
  • Any young person anywhere in the world can take part in the online showcase, and there are in-person events in some countries for local creators too (find out more below)
  • Registration for the online showcase is now open and closes on 22 May 2024
  • All creators, mentors, volunteers, teachers, parents, and supporters are invited to the special celebration livestream on 26 June 2024

Taking part in Coolest Projects is simple:

  • Young people think of an idea for their project, or choose something they’ve already made and are proud of
  • Young people work with friends to create their project, or make it on their own 
  • Creators (with the help of mentors if needed) register projects via the Coolest Projects website by 22 May
  • Creators’ projects are shared with the world in the online showcase gallery
  • Creators, mentors, and supporters explore the amazing projects in the online gallery, and join the livestream on 26 June to celebrate young creators’ achievements with the Coolest Projects community worldwide
Two young coders work on their tech project on a laptop to control a sewing machine for Coolest Projects.

Coolest Projects in-person events in 2024

As well as the global online showcase, Coolest Projects in-person events are held for young people locally in certain countries too, and we encourage creators to take part in both the online showcase and their local in-person event.

The exhibition hall at Coolest Projects Ireland 2023.

In 2024, creators can look forward to the following in-person events, run by us and partner organisations around the world:

More events are coming soon, so sign up to the Coolest Projects newsletter to be sure to hear about any in-person events in your country. And if there isn’t an event near you, don’t worry. The online showcase is open to any young person anywhere in the world.

A Coolest Projects sign with two people doing handstands in front of it.

Help for you is at hand

Coolest Projects welcomes all digital tech projects, from beginner to advanced, and there are loads of great resources available to help you support the young people in your community to take part.

Young people and an adult mentor at a computer at Coolest Projects Ireland 2023.

We are running a series of online calls and webinars for mentors and young people to share practical tips and help participants develop their ideas and build their creations. Sign up for the sessions here. All sessions will be recorded, so you can watch them back if you can’t join live.

You can also check out the Coolest Projects guidance page for resources to help you support young people throughout their Coolest Projects journey, including a mentor guide and session plans.

Five young coders show off their robotic garden tech project for Coolest Projects.

To inspire your coders, encourage them to take a look at the 2023 showcase gallery, where they can explore the incredible projects submitted by participants last year.

Our projects site is also a great place for participants to begin — there are hundreds of free step-by-step project guides to help young people create their own projects, whether they’re experienced tech creators or they’re just getting started.

Sign up for Coolest Projects updates

There’s lots more exciting news to come, from the announcement of our VIP judges to details about this year’s swag, so sign up for email updates to be the first to know. And whether your coders have already made something fun, innovative, or amazing that they want to share, or they’re inspired to make something new, Coolest Projects is the place for them. We can’t wait to see what they create!

The post Registration is open for Coolest Projects 2024 appeared first on Raspberry Pi Foundation.

Our T Level resources to support vocational education in England

Par : Jan Ander

You can now access classroom resources created by us for the T Level in Digital Production, Design and Development. T Levels are a type of vocational qualification young people in England can gain after leaving school, and we are pleased to be able to support T Level teachers and students.

A teenager learning computer science.

With our new resources, we aim to empower more young people to develop their digital skills and confidence while studying, meaning they can access more jobs and opportunities for further study once they finish their T Levels.

We worked collaboratively with the Gatsby Charitable Foundation on this pilot project as part of their Technical Education Networks Programme, the first time that we have created classroom resources for post-16 vocational education.

Post-16 vocational training and T Levels

T Levels are Technical Levels, 2-year courses for 16- to 18-year-old school leavers. Launched in England in September 2020, T Levels cover a range of subjects and have been developed in collaboration with employers, education providers, and other organisations. The aim is for T Levels to specifically prepare young people for entry into skilled employment, an apprenticeship, or related technical study in further or higher education.

A group of young people in a lecture hall.

For us, this T Level pilot project follows on from work we did in 2022 to learn more about post-16 vocational training and identify gaps where we could make a difference. 

Something interesting we found was the relatively low number of school-age young people who started apprenticeships in the UK in 2019/20. For example, a 2021 Worldskills UK report stated that only 18% of apprentices were young people aged 19 and under. 39% were aged 19-24, and the remaining 43% were people aged 25 and over.

To hear from young people about their thoughts directly, we spoke to a group of year 10 students (ages 14 to 15) at Gladesmore School in Tottenham. Two thirds of these students said that digital skills were ‘very important’ to them, and that they would consider applying for a digital apprenticeship or T Level. When we asked them why, one of the key reasons they gave was the opportunity to work and earn money, rather than moving into further study in higher education and paying tuition fees. One student’s answer was for example, “It’s a good way to learn new skills while getting paid, and also gives effective work experience.”

T Level curriculum materials and project brief

To support teachers in delivering the Digital Production, Design and Development T Level qualification, we created a new set of resources: curriculum materials as well a project brief with examples to support the Occupational Specialism component of the qualification. 

A girl in a university computing classroom.

The curriculum materials on the topic ‘Digital environments’ cover content related to computer systems including hardware, software, networks, and cloud environments. They are designed for teachers to use in the classroom and consist of a complete unit of work: lesson plans, slide decks, activities, a progression chart, and assessment materials. The materials are designed in line with our computing content framework and pedagogy principles, on which the whole of our Computing Curriculum is based.

The project brief is a real-world scenario related to our work and gives students the opportunity to problem-solve as though they are working in an industry job.

Access the T Level resources

The T Level project brief materials are available for download now, with the T Level classroom materials coming in the next few weeks.

We hope T Level teachers and students find the resources useful and interesting — if you’re using them, please let us know your thoughts and feedback.

Our thanks to the Gatsby Foundation for collaborating with us on this work to empower more young people to fulfil their potential through the power of computing and digital technologies.

The post Our T Level resources to support vocational education in England appeared first on Raspberry Pi Foundation.

Grounded cognition: physical activities and learning computing

Everyone who has taught children before will know the excited gleam in their eyes when the lessons include something to interact with physically. Whether it’s printed and painstakingly laminated flashcards, laser-cut models, or robots, learners’ motivation to engage with the topic will increase along with the noise levels in the classroom.

Two learners do physical computing in the primary school classroom.

However, these hands-on activities are often seen as merely a technique to raise interest, or a nice extra project for children to do before the ‘actual learning’ can begin. But what if this is the wrong way to think about this type of activity? 

How do children learn?

In our 2023 online research seminar series, focused on computing education for primary-aged (K–5) learners, we delved into the most recent research aimed at enhancing learning experiences for students in the earliest stages of education. From a deep dive into teaching variables to exploring the integration of computational thinking, our series has looked at the most effective ways to engage young minds in the subject of computing.

An adult on a plain background.

It’s only fitting that in our final seminar in the series, Anaclara Gerosa from the University of Glasgow tackled one of the most fundamental questions in education: how do children actually learn? Beyond the conventional methods, emerging research has been shedding light on a fascinating approach — the concept of grounded cognition. This theory suggests that children don’t merely passively absorb knowledge; they physically interact with it, quite literally ‘grasping’ concepts in the process.

Grounded cognition, also known in variations as embodied and situated cognition, offers a new perspective on how we absorb and process information. At its core, this theory suggests that all cognitive processes, including language and thought, are rooted in the body’s dynamic interactions with the environment. This notion challenges the conventional view of learning as a purely cognitive activity and highlights the impact of action and simulation.

A group of learners do physical computing in the primary school classroom.

There is evidence from many studies in psychology and pedagogy that using hands-on activities can enhance comprehension and abstraction. For instance, finger counting has been found to be essential in understanding numerical systems and mathematical concepts. A recent study in this field has shown that children who are taught basic computing concepts with unplugged methods can grasp abstract ideas from as young as 3. There is therefore an urgent need to understand exactly how we could use grounded cognition methods to teach children computing — which is arguably one of the most abstract subjects in formal education.

A recent study in this field has shown that children who are taught basic computing concepts with unplugged methods can grasp abstract ideas from as young as 3.

A new framework for teaching computing

Anaclara is part of a group of researchers at the University of Glasgow who are currently developing a new approach to structuring computing education. Their EIFFEL (Enacted Instrumented Formal Framework for Early Learning in Computing) model suggests a progression from enacted to formal activities.

Following this model, in the early years of computing education, learners would primarily engage with activities that allow them to work with tangible 3D objects or manipulate intangible objects, for instance in Scratch. Increasingly, students will be able to perform actions in an instrumented or virtual environment which will require the knowledge of abstract symbols but will not yet require the knowledge of programming languages. Eventually, students will have developed the knowledge and skills to engage in fully formal environments, such as writing advanced code.

A graph illustrating the EIFFEL model for early computing.

In a recent literature review, Anaclara and her colleagues looked at existing research into using grounded cognition theory in computing education. Although several studies report the use of grounded approaches, for instance by using block-based programming, robots, toys, or construction kits, the focus is generally on looking at how concrete objects can be used in unplugged activities due to specific contexts, such as a limited availability of computing devices.

The next steps in this area are looking at how activities that specifically follow the EIFFEL framework can enhance children’s learning. 

You can watch Anaclara’s seminar here: 

You can also access the presentation slides here.

Try grounded activities in your classroom

Research into grounded cognition activities in computer science is ongoing, but we encourage you to try incorporating more hands-on activities when teaching younger learners and observing the effects yourself. Here are a few ideas on how to get started:

Join us at our next seminar

In 2024, we are exploring different ways to teach and learn programming, with and without AI tools. In our next seminar, on 13 February at 17:00 GMT, Majeed Kazemi from the University of Toronto will be joining us to discuss whether AI-powered code generators can help K–12 students learn to program in Python. All of our online seminars are free and open to everyone. Sign up and we’ll send you the link to join on the day.

The post Grounded cognition: physical activities and learning computing appeared first on Raspberry Pi Foundation.

An integrated learning experience for young people

We’re currently trialling the full integration of our Code Editor in some of the projects on our Projects site, with the aim of providing a seamless experience for young learners. Our Projects site provides hundreds of free coding projects with step-by-step instructions for young people to use at school, in Code Clubs and CoderDojo clubs, and at home. When learners make text-based programming projects in our Python and web design project paths, they use our Code Editor to write and run code in a web browser.

A young person at a computer in a classroom.

Our new integrated learning experience allows young people to follow the project instructions and work in the Code Editor in a single window. By providing a simpler workspace, where learners do not need to switch between windows to read instructions and input code, we aim to reduce cognitive load and make it easier for young people to learn.

How the new integrated experience works

In the integrated project workspace, learners can access the project instructions, coding area, and output (where they can see what they have made) all in the same view. We have reorganised the project guides into short, easy-to-follow steps made up of simple instructions, including code snippets and modelled examples, for learners to work through to create their projects. The project guides feature fresh designs for different types of learning content, such as instruction steps, concept steps, code snippets, tips, and debugging help.

A screenshot of the new Code Editor.

We have also optimised this learning experience for young people using mobiles and tablets. On mobile devices, a new ‘Steps’ tab appears alongside the ‘Code’ and ‘Output’ tabs, enabling learners to easily navigate to the project guide and follow the steps to make their projects.

Try out our new learning experience

We are testing our new integrated learning experience as a beta version in three projects: 

  • Hello world (part of our ‘Introduction to Python’ project path) 
  • Target practice (part of our ‘Introduction to Python’ project path) 
  • Anime expressions (part of our ‘Introduction to web development’ project path) 

In each of these projects, young people can choose to complete the original version of the project, with the project instructions and Code Editor in separate windows, or click the button on the project page to try out the new integrated learning experience.

A screenshot of the new Code Editor.

We’d love to hear how your young learners get on with this new integrated experience. Try it out in the three projects above and share your feedback with us here.

Code Editor developments have been made possible with generous support from the Cisco Foundation.

The post An integrated learning experience for young people appeared first on Raspberry Pi Foundation.

Celebrating the community: Sahibjot

In our series of community stories, we celebrate some of the wonderful things young people and educators around the world are achieving through the power of technology. 

A young person sits in a classroom.

In our latest story, we’re heading to Vivek High School in Mohali, India, to meet Sahibjot, a 14-year-old coding enthusiast who has taken his hobby to the next level thanks to mentorship, Code Club, and the exciting opportunity to take part in the Coolest Projects 2023 global online showcase.

Introducing Sahibjot

When he was younger, Sahibjot loved playing video games. His interest in gaming led him to discover the world of game development, and he was inspired to find out more and try it out himself. He began to learn to code in his spare time, using tutorials to help him develop his skills.

A young person sits at a table outside and uses a laptop.

Keen to share the joy he had experienced from gaming, Sahibjot set himself the challenge of creating a game for his cousin. This project cemented his enthusiasm for coding and developing games of his own.

“I always felt that I have played so many games in my life, why not make one and others will enjoy the same experience that I had as a child.

For my cousin, I made a personal game for him, and he played it and he liked it very much, so once he played it, I felt that, yes, this is what I want to do with my life.” – Sahibjot

Mentorship and collaboration

While continuing to hone his computing skills at home, Sahibjot heard that his school had started a Code Club. After initially feeling nervous about joining, his enthusiasm was bolstered by the club mentor, Rajan, talking about artificial intelligence and other interesting topics during the session, and he soon settled in. 

A group of students and a teacher at computers in a classroom.

At Code Club, with support and encouragement from Rajan, Sahibjot continued to develop and grow his coding skills. Alongside his technical skills, he also learned about teamwork and working collaboratively. He embraced the opportunity to help his peers, sharing his knowledge with others and becoming a mentor for younger club members. 

Three students chat outside a school building.

“Last year, we joined this coding club together and we became friends. He’s a very friendly person. Whenever we need him, he just quickly helps us. He helps us to troubleshoot, find any bugs, or even fix our codes.” – Akshat, fellow Code Club member

A global opportunity

The next step for Sahibjot came when Rajan introduced him and his fellow Code Club members to Coolest Projects. Coolest Projects is a celebration of young digital creators and the amazing things they make with technology. It offers participants the opportunity to share their tech creations in a global, online showcase, and local in-person events celebrating young creators are also held in several countries.

A group of students in a classroom being guided through their computing projects by a teacher.

Sahibjot was eager to take part and showcase what he had made. He submitted a Python project, a ping-pong game, to the online showcase, and was very excited to then see his creation receive a special shout-out during the Coolest Projects global livestream event. He was delighted to share this achievement with his friends and family, and he felt proud to be representing his school and his country on a global stage.

“I told everyone around me that there was going to be a livestream and I possibly might be featured in that, so that was really exciting. I learned a lot about just not representing my school and myself as an individual, I learned about representing my whole nation.” — Sahibjot

Sahibjot’s passion for computing has helped shape his aspirations and ambitions. Looking to the future, he hopes to use his technology skills to benefit others and make an impact.

“Using code and technology and all of the things like that, I aspire to make effort to do something with the world, like help out people with technology.” — Sahibjot

Inspire young creators like Sahibjot

To find out how you and young creators you know can get involved in Coolest Projects, visit coolestprojects.org. If the young people in your community are just starting out on their computing journey, visit our projects site for free, fun beginner coding projects.

For more information to help you set up a Code Club in your school, visit codeclub.org.

Join us in celebrating Sahibjot’s inspiring journey by sharing his story on X (formerly Twitter), LinkedIn, and Facebook.

The post Celebrating the community: Sahibjot appeared first on Raspberry Pi Foundation.

Code Club at Number Ten Downing Street

With the rapid advances in digital technologies like artificial intelligence, it’s more important than ever that every young person has the opportunity to learn how computers are being used to change the world and to develop the skills and confidence to get creative with technology. 

Learners at a Code Club taking place at Number Ten Downing Street.
Crown copyright. Licensed under the Open Government Licence.

There’s no better way to develop those abilities (super powers even) than getting hands-on experience of programming, whether that’s coding an animation, designing a game, creating a website, building a robot buggy, or training an AI classification model. That’s what tens of thousands of young people do every day in Code Clubs all over the world. 

Lessons at 10 

We were absolutely thrilled to organise a Code Club at Number Ten Downing Street last week, hosted by the UK Prime Minister’s wife Akshata Murty as part of Lessons at 10.

A Code Club session taking place at Number Ten Downing Street.
Crown copyright. Licensed under the Open Government Licence.

Lessons at 10 is an initiative to bring school children from all over the UK into Number Ten Downing Street, the official residence of the Prime Minister. Every week different schools visit to attend lessons led by education partners covering all kinds of subjects. 

A Code Club session taking place at Number Ten Downing Street.
Crown copyright. Licensed under the Open Government Licence.

We ran a Code Club for 20 Year 7 students (ages 11 to 12) from schools in Coventry and Middlesex. The young people had a great time with the Silly eyes and Ghostbusters projects from our collections of Scratch projects. Both stone-cold classics in my opinion, and a great place to start if you’re new to programming.

A Code Club session taking place at Number Ten Downing Street.
Crown copyright. Licensed under the Open Government Licence.

You may have spotted in the photos that the young people were programming on Raspberry Pi computers (the incredible Raspberry Pi 400 made in Wales). We also managed to get our hands on some cool new monitors. 

Mrs Murty’s father was one of the founders of Infosys, which ranks among the world’s most successful technology companies, founded in India and now operating all over the world. So it is perhaps no surprise that she spoke eloquently to the students about the importance of every young person learning about technology and seeing themselves as digital creators not consumers.

Akshata Murty talks to Philip Colligan, CEO of the Raspberry Pi Foundation.
Crown copyright. Licensed under the Open Government Licence.

We were lucky enough to be in one of the rather fancy rooms in Number Ten, featuring a portrait by John Constable of his niece Ada Lovelace, the world’s first computer programmer. Mrs Murty reminded us that one of the lessons we learn from Ada Lovelace is that computer programming combines both the logical and artistic aspects of human intelligence. So true. 

A global movement 

Since Code Club’s launch in April 2012, it has grown to be the world’s largest movement of free computing clubs and has supported over 2 million young people to get creative with technology.

Learners from a Code Club in front of Number Ten Downing Street.
Crown copyright. Licensed under the Open Government Licence.

Code Clubs provide a free, fun, and safe environment for young people from all backgrounds to develop their digital skills. Run by teachers and volunteers, most Code Clubs take place in schools, and there are also lots in libraries and other community venues. 

The Raspberry Pi Foundation provides a broad range of projects that young people use to build their confidence and skills with lots of different hardware and software. The ultimate goal is that they are empowered to combine their logical and artistic skills to create something original. Just like Ada Lovelace did all those years ago.

Learners at a Code Club taking place at Number Ten Downing Street.
Crown copyright. Licensed under the Open Government Licence.

All of our projects are designed to be self-directed, so young people can learn independently or in groups. That means that you don’t need to be a tech expert to set up or run a Code Club. We provide you with all the support that you need to get started.

If you want to find out more about how to set up a Code Club, visit the website here.

The post Code Club at Number Ten Downing Street appeared first on Raspberry Pi Foundation.

Get ready for Mission Space Lab with our new simulation tool

Since November, registration is open for Mission Space Lab, part of the European Astro Pi Challenge 2023/24. The Astro Pi Challenge is an ESA Education project run in collaboration with us here at the Raspberry Pi Foundation that gives young people up to age 19 the amazing opportunity to write computer programs that run on board the International Space Station (ISS). It is free to take part and young people can participate in two missions: Mission Zero, designed for beginners, and Mission Space Lab, designed for more experienced coders.

Two young people working together on a tech project.

This year, Mission Space Lab has a brand-new format. As well as introducing a new activity for teams to work on, we have created new resources to support teams and mentors, and developed a special tool to help teams test their programs. 

A young person writes Python code.

A big motivator for these changes was to make the activity more accessible and enable more young people to have their code run in space. Listening to feedback from participants and mentors, we are creating the opportunity for even more teams to submit programs that run on the ISS this year, by offering a specific activity and providing more extensive support materials.

A scientific task

For this year’s mission, ESA astronauts have given teams a specific scientific task to solve: to calculate the speed that the ISS is travelling as it orbits the Earth. People working in science often investigate a specific phenomenon or try to solve a particular problem. They have to use their knowledge and skills and the available tools to find ways to answer their research question. For Mission Space Lab, teams will work just like this. They will look at what sensors are available on the Astro Pi computers on board the ISS, develop a solution, and then write a Python program to execute it. To test their program, they will use the new Astro Pi Replay software tool we’ve created, which simulates running their program on board the ISS.

The two Astro Pi computers.
The Astro Pi computers 

To help teams and mentors take part in Mission Space Lab, we are providing a variety of supporting materials:

  • Our mentor guide has everything mentors need to support their teams through Mission Space Lab, including guidance for structuring the mission and tips to help teams solve problems.
  • Our creator guide helps young people design and create their programs. It provides information and technical instructions to help young people develop their coding skills and create a program that can be run on the Astro Pis on board the ISS.
  • We have created an ISS speed project guide that shows an example of how the scientific task can be solved using photos captured by the Astro Pi’s camera.

We have also run virtual sessions to help mentors and teams familiarise themselves with the new Mission Space Lab activity, and to ask any technical questions they might have. You can watch the recordings of these sessions on YouTube: 

The Astro Pi Replay tool

Astro Pi Replay is a new simulation tool that we have developed to support Mission Space Lab teams to test their programs. The tool simulates running programs on the Astro Pi computers on board the ISS. It is a Python library available as a plug-in to install in the Thonny IDE where teams write their programs. Thanks to this tool, teams can develop and test their programs on any computer that supports Python, without the need for hardware like the Astro Pi units on board the ISS.

The Astro Pi Replay tool works by replaying a data set captured by a Mission Space Lab team in May 2023. The data set includes readings from the Astro Pi ‘s sensors, and images taken by its visible-light camera like the ones below. Whenever teams run their programs in Thonny with Astro Pi Replay, the tool replays some of this historical data. That means teams can use the historical data to test their programs and calculations.

A photo the Mediterranean sea with the coastline of Sicily and Tunisia
The Mediterranean sea with the coastlines of Sicily and Tunisia
A photo the Irish Sea with the coastlines of the UK and Ireland
The Irish Sea with the coastlines of Great Britain and Ireland
A photo the Coastline of Southern Egypt and the Red Sea
The coastline of southern Egypt and the Red Sea

One of the benefits of using this simulation tool is that it gives teams a taste of what they can expect if their program is run on the ISS. By replaying a sequence of data captured by the Astro Pis in space, teams using sensors will be able to see what kind of data can be collected, and teams using the camera will be able to see some incredible Earth observation images.

If you’re curious about how Astro Pi Replay works, you’ll be pleased to hear we are making it open source soon. That means you’ll be able to look at the source code and find out exactly what the library does and how.

Get involved

Community members have consistently reported how amazing it is for teams to receive unique Earth observation photos and sensor data from the Astro Pis, and how great the images and data are to inspire young people to participate in their computing classes, clubs, or events. Through the changes we’ve made to Mission Space Lab this year, we want to support as many young people as possible to have the opportunity to engage in space science and capture their own data from the ISS. 

If you want a taste of how fantastic Astro Pi is for learners, watch the story of St Joseph’s, a rural Irish school where participating in Astro Pi has inspired the whole community.

Submissions for Mission Space Lab 2023/24 are open until 19 February 2024, so there’s still time to take part! You can find full details and eligibility criteria at astro-pi.org/mission-space-lab.

If you have any questions about the European Astro Pi Challenge, please get in touch at contact@astro-pi.org.

The post Get ready for Mission Space Lab with our new simulation tool appeared first on Raspberry Pi Foundation.

Integrating computational thinking into primary teaching

“Computational thinking is really about thinking, and sometimes about computing.” – Aman Yadav, Michigan State University

Young people in a coding lesson.

Computational thinking is a vital skill if you want to use a computer to solve problems that matter to you. That’s why we consider computational thinking (CT) carefully when creating learning resources here at the Raspberry Pi Foundation. However, educators are increasingly realising that CT skills don’t just apply to writing computer programs, and that CT is a fundamental approach to problem-solving that can be extended into other subject areas. To discuss how CT can be integrated beyond the computing classroom and help introduce the fundamentals of computing to primary school learners, we invited Dr Aman Yadav from Michigan State University to deliver the penultimate presentation in our seminar series on computing education for primary-aged children. 

In his presentation, Aman gave a concise tour of CT practices for teachers, and shared his findings from recent projects around how teachers perceive and integrate CT into their lessons.

Research in context

Aman began his talk by placing his team’s work within the wider context of computing education in the US. The computing education landscape Aman described is dominated by the National Science Foundation’s ambitious goal, set in 2008, to train 10,000 computer science teachers. This objective has led to various initiatives designed to support computer science education at the K–12 level. However, despite some progress, only 57% of US high schools offer foundational computer science courses, only 5.8% of students enrol in these courses, and just 31% of the enrolled students are female. As a result, Aman and his team have worked in close partnership with teachers to address questions that explore ways to more meaningfully integrate CT ideas and practices into formal education, such as:

  • What kinds of experiences do students need to learn computing concepts, to be confident to pursue computing?
  • What kinds of knowledge do teachers need to have to facilitate these learning experiences?
  • What kinds of experiences do teachers need to develop these kinds of knowledge? 

The CT4EDU project

At the primary education level, the CT4EDU project posed the question “What does computational thinking actually look like in elementary classrooms, especially in the context of maths and science classes?” This project involved collaboration with teachers, curriculum designers, and coaches to help them conceptualise and implement CT in their core instruction.

A child at a laptop

During professional development workshops using both plugged and unplugged tasks, the researchers supported educators to connect their day-to-day teaching practice to four foundational CT constructs:

  1. Debugging
  2. Abstraction
  3. Decomposition
  4. Patterns

An emerging aspect of the research team’s work has been the important relationship between vocabulary, belonging, and identity-building, with implications for equity. Actively incorporating CT vocabulary in lesson planning and classroom implementation helps students familiarise themselves with CT ideas: “If young people are using the language, they see themselves belonging in computing spaces”. 

A main finding from the study is that teachers used CT ideas to explicitly engage students in metacognitive thinking processes, and to help them be aware of their thinking as they solve problems. Rather than teachers using CT solely to introduce their students to computing, they used CT as a way to support their students in whatever they were learning. This constituted a fundamental shift in the research team’s thinking and future work, which is detailed further in a conceptual article

The Smithsonian Science for Computational Thinking project

The work conducted for the CT4EDU project guided the approach taken in the Smithsonian Science for Computational Thinking project. This project entailed the development of a curriculum for grades 3 and 5 that integrates CT into science lessons.

Teacher and young student at a laptop.

Part of the project included surveying teachers about the value they place on CT, both before and after participating in professional development workshops focused on CT. The researchers found that even before the workshops, teachers make connections between CT and the rest of the curriculum. After the workshops, an overwhelming majority agreed that CT has value (see image below). From this survey, it seems that CT ties things together for teachers in ways not possible or not achieved with other methods they’ve tried previously.  

A graph from Aman's seminar.

Despite teachers valuing the CT approach, asking them to integrate coding into their practices from the start remains a big ask (see image below). Many teachers lack knowledge or experience of coding, and they may not be curriculum designers, which means that we need to develop resources that allow teachers to integrate CT and coding in natural ways. Aman proposes that this requires a longitudinal approach, working with teachers over several years, using plugged and unplugged activities, and working closely with schools’ STEAM or specialist technology teachers where applicable to facilitate more computationally rich learning experiences in classrooms.

A graph from Aman's seminar.

Integrated computational thinking

Aman’s team is also engaged in a research project to integrate CT at middle school level for students aged 11 to 14. This project focuses on the question “What does CT look like in the context of social studies, English language, and art classrooms?”

For this project, the team conducted three Delphi studies, and consequently created learning pathways for each subject, which teachers can use to bring CT into their classrooms. The pathways specify practices and sub-practices to engage students with CT, and are available on the project website. The image below exemplifies the CT integration pathways developed for the arts subject, where the relationship between art and data is explored from both directions: by using CT and data to understand and create art, and using art and artistic principles to represent and communicate data. 

Computational thinking in the primary classroom

Aman’s work highlights the broad value of CT in education. However, to meaningfully integrate CT into the classroom, Aman suggests that we have to take a longitudinal view of the time and methods required to build teachers’ understanding and confidence with the fundamentals of CT, in a way that is aligned with their values and objectives. Aman argues that CT is really about thinking, and sometimes about computing, to support disciplinary learning in primary classrooms. Therefore, rather than focusing on integrating coding into the classroom, he proposes that we should instead talk about using CT practices as the building blocks that provide the foundation for incorporating computationally rich experiences in the classroom. 

Watch the recording of Aman’s presentation:

You can access Aman’s seminar slides as well.

You can find out more about connecting research to practice for primary computing education by watching the recordings of the other seminars in our series on primary (K–5) teaching and learning. In particular, Bobby Whyte discusses similar concepts to Aman in his talk on integrating primary computing and literacy through multimodal storytelling

Sign up for our seminars

Our 2024 seminar series is on the theme of teaching programming, with or without AI. In this series, we explore the latest research on how teachers can best support school-age learners to develop their programming skills.

On 13 February, we’ll hear from Majeed Kazemi (University of Toronto) about his work investigating whether AI code generator tools can support K-12 students to learn Python programming.

Sign up now to join the seminar:

The post Integrating computational thinking into primary teaching appeared first on Raspberry Pi Foundation.

Working with UK youth and community organisations to tackle the digital divide

At the heart of our work as a charity is the aim to democratise access to digital skills and technologies. Since 2020, we have partnered with over 100 youth and community organisations in the UK to develop programmes that increase opportunities for young people experiencing educational disadvantage to engage and create with digital technology in underserved communities.

Youth organisations attempting to start a coding club can face a range of practical and logistical challenges, from a lack of space, to funding restrictions, and staff shortages. However, the three issues that we hear about most often are a lack of access to hardware, lack of technical expertise among staff, and low confidence to deliver activities on an ongoing basis.

In 2023, we worked to help youth organisations overcome these barriers by designing and delivering a new hybrid training programme, supported by Amazon Future Engineer. With the programme, we aimed to help youth leaders and educators successfully incorporate coding and digital making activities as part of their provision to young people.

“Really useful, I have never used Scratch so going [through] the project made it clear to understand and how I would facilitate this for the children[.]” – Heather Coulthard, Doncaster Children’s University

Participating organisations

We invited 14 organisations from across the UK to participate in the training, based on:

  • The range of frontline services they already provide to young people in underresourced areas (everything from employability skills workshops to literacy classes, food banks, and knife crime awareness schemes)
  • Previous participation in Raspberry Pi Foundation programmes
  • Their commitment to upskill their staff and volunteers and to run sessions with young people on a regular basis following the training

Attendees included a number of previous Learn at Home partners, including Breadline London, Manchester Youth Zone, and Youth Action. They all told us that the additional support they had received from the Foundation and organisations such as The Bloomfield Trust during the coronavirus pandemic had directly inspired them to participate in the training and begin their own coding clubs. 

Online sessions to increase skills and confidence

We started with four online training sessions where we introduced the youth leaders to digital making concepts, programming languages, and recommended activities to run with their young people. This included everything from making their own block-based Scratch games, to running Python programs on our Code Editor and trying out physical computing via our new micro:bit project path.

Alongside digital skills and interactive codealongs, the training also focused on how to be an effective CoderDojo mentor, including classroom management best practice, an explanation of the thinking behind our 3…2…1…Make! project paths, and an overview of culturally relevant pedagogy.

This last part explored how youth leaders can adapt and tailor digital making resources designed for a wide, general audience for their specific groups of young people to aid their understanding, boost their learning outcomes, and increase their sense of belonging within a coding club environment — a common blocker for organisations trying to appeal to marginalised youth.

In-person training to excite and inspire

The training culminated in a day-long, in-person session at our head office in Cambridge, so that youth leaders and educators from each organisation could get hands-on experience. They experimented with physical computing components such as the Raspberry Pi Pico, trained their own artificial intelligence (AI) models using our Experience AI resources, and learned more about how their young people can get involved with Coolest Projects and Astro Pi Mission Zero.

The in-person session also gave everyone the chance to get excited about running digital making activities at their centres: the youth leaders got to ask our team questions, and had the invaluable opportunity to meet each other, share their stories, swap advice, and discuss the challenges they face with their peers.

“Having the in-person immensely improved my skills and knowledge. The instructors were all brilliant and very passionate.” – Awale Elmi, RISE Projects

Continuing support

Finally, thanks to the generous support from Amazon Future Engineer, we were able to equip each participating organisation with Raspberry Pi 400 kits so that the youth leaders can practise and share the skills and knowledge they gained on the course at their centres and the organisations can offer computing activities in-house.

Over the next 12 months, we will continue to work with each of these youth and community organisations, supporting them to establish their coding clubs, and helping to ensure that young people in their communities get a fair and equal opportunity to engage and create with technology, no matter their background or challenges they are facing.

“It was really great. The online courses are excellent and being in-person to get answers to questions really helped. The tinkering was really useful and having people on hand to answer questions [was] massively useful.” – Liam Garnett, Leeds Libraries

For more information about how we can support youth and community organisations in the UK to start their own coding clubs, please send us a message with the subject ‘Partnerships’.

The post Working with UK youth and community organisations to tackle the digital divide appeared first on Raspberry Pi Foundation.

Teaching about AI explainability

Par : Mac Bowley

In the rapidly evolving digital landscape, students are increasingly interacting with AI-powered applications when listening to music, writing assignments, and shopping online. As educators, it’s our responsibility to equip them with the skills to critically evaluate these technologies.

A woman teacher helps a young person with a coding project.

A key aspect of this is understanding ‘explainability’ in AI and machine learning (ML) systems. The explainability of a model is how easy it is to ‘explain’ how a particular output was generated. Imagine having a job application rejected by an AI model, or facial recognition technology failing to recognise you — you would want to know why.

Two teenage girls do coding activities at their laptops in a classroom.

Establishing standards for explainability is crucial. Otherwise we risk creating a world where decisions impacting our lives are made by opaque systems we don’t understand. Learning about explainability is key for students to develop digital literacy, enabling them to navigate the digital world with informed awareness and critical thinking.

Why AI explainability is important

AI models can have a significant impact on people’s lives in various ways. For instance, if a model determines a child’s exam results, parents and teachers would want to understand the reasoning behind it.

Two learners sharing a laptop in a coding session.

Artists might want to know if their creative works have been used to train a model and could be at risk of plagiarism. Likewise, coders will want to know if their code is being generated and used by others without their knowledge or consent. If you came across an AI-generated artwork that features a face resembling yours, it’s natural to want to understand how a photo of you was incorporated into the training data. 

Explainability is about accountability, transparency, and fairness, which are vital lessons for children as they grow up in an increasingly digital world.

There will also be instances where a model seems to be working for some people but is inaccurate for a certain demographic of users. This happened with Twitter’s (now X’s) face detection model in photos; the model didn’t work as well for people with darker skin tones, who found that it could not detect their faces as effectively as their lighter-skinned friends and family. Explainability allows us not only to understand but also to challenge the outputs of a model if they are found to be unfair.

In essence, explainability is about accountability, transparency, and fairness, which are vital lessons for children as they grow up in an increasingly digital world.

Routes to AI explainability

Some models, like decision trees, regression curves, and clustering, have an in-built level of explainability. There is a visual way to represent these models, so we can pretty accurately follow the logic implemented by the model to arrive at a particular output.

By teaching students about AI explainability, we are not only educating them about the workings of these technologies, but also teaching them to expect transparency as they grow to be future consumers or even developers of AI technology.

A decision tree works like a flowchart, and you can follow the conditions used to arrive at a prediction. Regression curves can be shown on a graph to understand why a particular piece of data was treated the way it was, although this wouldn’t give us insight into exactly why the curve was placed at that point. Clustering is a way of collecting similar pieces of data together to create groups (or clusters) with which we can interrogate the model to determine which characteristics were used to create the groupings.

A decision tree that classifies animals based on their characteristics; you can follow these models like a flowchart

However, the more powerful the model, the less explainable it tends to be. Neural networks, for instance, are notoriously hard to understand — even for their developers. The networks used to generate images or text can contain millions of nodes spread across thousands of layers. Trying to work out what any individual node or layer is doing to the data is extremely difficult.

Learners in a computing classroom.

Regardless of the complexity, it is still vital that developers find a way of providing essential information to anyone looking to use their models in an application or to a consumer who might be negatively impacted by the use of their model.

Model cards for AI models

One suggested strategy to add transparency to these models is using model cards. When you buy an item of food in a supermarket, you can look at the packaging and find all sorts of nutritional information, such as the ingredients, macronutrients, allergens they may contain, and recommended serving sizes. This information is there to help inform consumers about the choices they are making.

Model cards attempt to do the same thing for ML models, providing essential information to developers and users of a model so they can make informed choices about whether or not they want to use it.

A model card mock-up from the Experience AI Lessons

Model cards include details such as the developer of the model, the training data used, the accuracy across diverse groups of people, and any limitations the developers uncovered in testing.

Model cards should be accessible to as many people as possible.

A real-world example of a model card is Google’s Face Detection model card. This details the model’s purpose, architecture, performance across various demographics, and any known limitations of their model. This information helps developers who might want to use the model to assess whether it is fit for their purpose.

Transparency and accountability in AI

As the world settles into the new reality of having the amazing power of AI models at our disposal for almost any task, we must teach young people about the importance of transparency and responsibility. 

An educator points to an image on a student's computer screen.

As a society, we need to have hard discussions about where and when we are comfortable implementing models and the consequences they might have for different groups of people. By teaching students about explainability, we are not only educating them about the workings of these technologies, but also teaching them to expect transparency as they grow to be future consumers or even developers of AI technology.

Most importantly, model cards should be accessible to as many people as possible — taking this information and presenting it in a clear and understandable way. Model cards are a great way for you to show your students what information is important for people to know about an AI model and why they might want to know it. Model cards can help students understand the importance of transparency and accountability in AI.  


This article also appears in issue 22 of Hello World, which is all about teaching and AI. Download your free PDF copy now.

If you’re an educator, you can use our free Experience AI Lessons to teach your learners the basics of how AI works, whatever your subject area.

The post Teaching about AI explainability appeared first on Raspberry Pi Foundation.

Celebrating young Coolest Projects creators at a London museum

Each year, young people all over the world share and celebrate their amazing tech creations by taking part in Coolest Projects, our digital technology showcase. Our global online showcase and local in-person events give kids a wonderful opportunity to celebrate their creativity with their communities, explore other young creators’ tech projects, and gain inspiration and encouragement for their future projects.

Coolest Projects exhibit at the Young V&A in London.
The Coolest Projects exhibit at the Young V&A in London.

Now, visitors to the Young V&A museum in London can also be inspired by some of the incredible creations showcased at Coolest Projects. The museum has recently reopened after a large reimagining, and some of the inspiring projects by Coolest Projects 2022 participants are now on display in the Design Gallery, ready to spark digital creativity among more young people.

Projects to solve problems

Many Coolest Projects participants showcase projects that they created to make an impact and solve a real-world problem that’s important to them, for example to help members of their local community, or to protect the environment.

A Coolest Projects entry at the Young V&A in London.
At Coolest Projects, Donal (age 9) showcased his creation to send notifications about coronavirus test results via email.

One example on display in the Young V&A gallery is EleVoc, by 15-year-old Chinmayi from India. Chinmayi was inspired to create her project after she and her family faced a frightening encounter:

“My family and I are involved in wildlife conservation. One time we were charged by elephants even though we were only passing by in a Jeep. This was my first introduction to human–animal conflict, and I wanted to find a way to solve it!” – Chinmayi

The experience prompted Chinmayi to create EleVoc, an early-warning device designed to reduce human–elephant conflict by detecting and classifying different elephant sounds and alerting nearby villages to the elephants’ proximity and behaviour.

Also exhibited at the Young V&A is the hardware project Gas Leak Detector by Sashrika, aged 11, from the USA. Gas Leak Detector is a device that detects if a fuel tank for a diesel-powered heating system is leaking and notifies householders through an app in a matter of second.

A Coolest Projects entry at the Young V&A.
A young person and their home-made gas leak detector.

Sashrika knew this invention could really make a difference to people’s lives. She explained, “Typically, diesel gas tanks for heating are in the basement where people don’t visit every day. Leakage may be unnoticed and lead to fire or major repair cost.”

Projects to have fun

As well as projects designed to solve problems, Coolest Projects also welcomes young people who create things to entertain or have fun. 

A Coolest Projects entry at the Young V&A.
Harshit’s game for Coolest Projects, now exhibited in the Young V&A

At the Young V&A, visitors can enjoy the fun, fast-paced game project Runaway Nose, by 10-year-old Harshit from Ireland. Runaway Nose uses facial recognition, and players have to use their nose to interact with the prompts on the screen. 

Harshit shared the motivation behind his project:

“I wanted to make a fun game to get you thinking fast and that would get you active, even on a rainy day.” – Harshit

We can confirm Runaway Nose is a lot of fun, and a must-do activity for people of all ages on a visit to the museum.

Join in the celebration!

If you are in London, make sure to head to the Young V&A to see Chinmayi’s, Sashrika’s, and Harshit’s projects, and many more. We love seeing the ingenuity of the global community of young tech creators celebrated, and hope it inspires you and your young people.

With that in mind, we are excited that Coolest Projects will be back in 2024. Registrations for the global Coolest Projects online showcase will be open from 14 February to 22 May 2024, and any young creator up to age 18 anywhere in the world can get involved. We’ll also be holding in-person Coolest Projects events for young people in Ireland and the UK. Head to the Coolest Projects website to find out more.

The exhibition hall at Coolest Projects Ireland 2023.
Coolest Projects Ireland 2023.

Coolest Projects is for all young people, no matter their level of coding experience. Kids who are just getting started and would like to take part can check out the free project guides on our projects site. These offer step-by-step guidance to help everyone make a tech project they feel proud of.

To always get the latest news about all things Coolest Projects, from event updates to the fun swag coming for 2024, sign up for the Coolest Projects newsletter.

The post Celebrating young Coolest Projects creators at a London museum appeared first on Raspberry Pi Foundation.

What is the impact of attending a Code Club or CoderDojo?

We support two networks of coding clubs where young people around the world discover the countless possibilities of creating with digital technologies.

Three learners working at laptops.
Young people in a CoderDojo in India.
  • Code Club is a global network of after-school coding clubs for learners aged 9 to 13, where educators and other volunteers help young people learn about coding and digital making
  • CoderDojo is a worldwide network of free, open, and community-based programming clubs for young people aged 7 to 17, where they get the opportunity to learn how to create fantastic new things with technology

Every year, we send out a survey to volunteers at all the clubs we support. Today we share some highlights from the findings and what we’re planning next.

An educator teaches students to create with technology.
A Code Club session in the USA.

Why do we do an annual survey for clubs?

The simple answer is: to help make clubs even better for everyone involved! Educators and volunteers are doing a remarkable job in helping young people learn about computing and coding, so we want to know more about them, about how they run their clubs, and what impact the club sessions have for young people.

A group of children and an adult have fun using Raspberry Pi hardware.
A CoderDojo session in the UK.

By knowing more about clubs — how frequently club leaders run them, what resources they use, what they would like more of — we can continue to improve the learning experience for educators, volunteers, and young people involved in our clubs.

This year in March we sent out our survey to all Code Clubs and CoderDojos around the world, and we heard back from almost 500. As always, the results were very positive, and they also gave us a lot of useful information on how we can continue to improve our support for clubs all over the world.

Who is involved in clubs?

Based on the survey, we estimate that at the time, the network of over 4200 Code Clubs and 700 CoderDojos was reaching almost 139,000 young people globally. The global community of clubs has continued to grow since then, with a now even larger network of volunteers supporting ever more young people.

Three learners laughing at a laptop in a Code Club.
Participants in a Code Club in the UK.

According to the survey, the majority of young people attending clubs are aged between 8 and 13, but clubs host young people as young as 6 and as old as 18. It was great to hear about the participation of girls, and we’d love to see this rise even higher: respondents told us that 42% of their Code Club attendees and 30% of their CoderDojo attendees are female.

Respondents feel that attending club sessions improves young peoples’ interest and engagement in computing and programming, and increases their understanding of the usefulness of computing.

None of these young people would be able to attend clubs without the great work of teams of educators and volunteers. Based on the survey, we estimate that at the time of the survey, there were over 10,300 Code Club leaders and almost 4000 CoderDojo champions around the world. Many survey respondents said that they were motivated to start volunteering after attending a club themselves.

Students in a Code Club run by CSEd Botswana.
A Code Club session in Botswana.

Community is at the heart of clubs and the clubs networks: over 80% of respondents said that belonging to a global community of clubs helps motivates them to volunteer at their own club.

What is the impact of clubs?

Clubs focus on a wide range of topics and programming languages. Scratch is overwhelmingly popular, with over 95% of respondents telling us that they used Scratch in club sessions in the previous year. Micro:bit projects and Python-based programming were also very popular. Club leaders told us that in future they would like to offer more activities around AI applications, as well as around games and mobile apps. 

A bar chart.

Club leaders told us that being part of a Code Club or CoderDojo affects young people positively. Respondents feel that attending club sessions improves young peoples’ skills and interest in computing and programming, and increases their understanding of the usefulness of computing. Almost 90% of club leaders also agree that after attending a club, young people are interested in additional experiences of learning about computing and programming.

Attending also positively affects young people’s wider skills and attitudes, with club leaders stating that young people who attend improve their personal confidence, independence in learning, and creative thinking. 

Young people who attend improve their personal confidence, independence in learning, and creative thinking.

We were pleased to find out that most Code Club leaders, who run their sessions in schools, think that their clubs increase the visibility of computing within their school. Many also said that the attendees’ parents and guardians value their clubs as opportunities for their children.

What’s next?

We want to keep providing clubs with support to increase their positive impact on young people. Thanks to the survey results, we know to focus our work on providing training opportunities for club volunteers, as well as supporting club leaders to recruit volunteers and advertise their clubs to more young people.

You can read the survey report to dive deeper into our findings.

As we take an impact-focused approach to our work, we are currently partnering with Durham University on an evaluation of Code Clubs in UK schools. The evaluation will provide further insights for how we can best support people around the world to run clubs that provide welcoming spaces where all kids can learn to create with digital technologies.

The post What is the impact of attending a Code Club or CoderDojo? appeared first on Raspberry Pi Foundation.

AI isn’t just robots: How to talk to young children about AI

Young children have a unique perspective on the world they live in. They often seem oblivious to what’s going on around them, but then they will ask a question that makes you realise they did get some insight from a news story or a conversation they overheard. This happened to me with a class of ten-year-olds when one boy asked, with complete sincerity and curiosity, “And is that when the zombie apocalypse happened?” He had unknowingly conflated the Great Plague with television depictions of zombies taking over the world.

How to talk to children about AI

Absorbing media and assimilating it into your existing knowledge is a challenge, and this is a concern when the media is full of big, scary headlines about artificial intelligence (AI) taking over the world, stealing jobs, and being sentient. As teachers and parents, you don’t need to know all the details about AI to answer young people’s questions, but you can avoid accidentally introducing alternate conceptions. This article offers some top tips to help you point those inquisitive minds in the right direction.

Child with tablet.
Photo by Kelly Sikkema.

AI is not a person

Technology companies like to anthropomorphise their products and give them friendly names. Why? Because it makes their products seem more endearing and less scary, and makes you more likely to include them in your lives. However, when you think of AI as a human with a name who needs you to say ‘please’ or is ‘there to help you’, you start to make presumptions about how it works, what it ‘knows’, and its morality. This changes what we ask, how much we trust an AI device’s responses, and how we behave when using the device. The device, though, does not ‘see’ or ‘know’ anything; instead, it uses lots of data to make predictions. Think of word association: if I say “bread”, I predict that a lot of people in the UK will think “butter”. Here, I’ve used the data I’ve collected from years of living in this country to predict a reasonable answer. This is all AI devices are doing. 

Child with phone.
Photo by bruce mars.

[AI] does not ‘see’ or ‘know’ anything; instead, it uses lots of data to make predictions.

When talking to young children about AI, try to avoid using pronouns such as ‘she’ or ‘he’. Where possible, avoid giving devices human names, and instead call them “computer”, to reinforce the idea that humans and computers are very different. Let’s imagine that a child in your class says, “Alexa told me a joke at the weekend — she’s funny!” You could respond, “I love using computers to find new jokes! What was it?” This is just a micro-conversation, but with it, you are helping to surreptitiously challenge the child’s perception of Alexa and the role of AI in it.

Where possible, avoid giving devices human names, and instead call them ‘computer’, to reinforce the idea that humans and computers are very different.

Another good approach is to remember to keep your emotions separate from computers, so as not to give them human-like characteristics: don’t say that the computer ‘hates’ you, or is ‘deliberately ignoring’ you, and remember that it’s only ‘helpful’ because it was told to be. Language is important, and we need to continually practise avoiding anthropomorphism.

AI isn’t just robots (actually, it rarely is)

The media plays a huge role in what we imagine when we talk about AI. For the media, the challenge is how to make lines of code and data inside a computer look exciting and recognisable to their audiences. The answer? Robots! When learners hear about AI taking over the world, it’s easy for them to imagine robots like those you’d find in a Marvel movie. Yet the majority of AI exists within systems they’re already aware of and are using — you might just need to help draw their attention to it.

Even better than just calling out uses of AI: try to have conversations about when things go wrong and AI systems suggest silly options.

For example, when using a word processor, you can highlight to learners that the software sometimes predicts what word you want to type next, and that this is an example of the computer using AI. When learners are using streaming services for music or TV and the service predicts something that they might want to watch or listen to next, point out that this is using AI technology. When they see their parents planning a route using a satnav, explain that the satnav system uses data and AI to plan the best route.

Even better than just calling out uses of AI: try to have conversations about when things go wrong and AI systems suggest silly options. This is a great way to build young people’s critical thinking around the use of computers. AI systems don’t always know best, because they’re just making predictions, and predictions can always be wrong.

AI complements humans

There’s a delicate balance between acknowledging the limitations of AI and portraying it as a problematic tool that we shouldn’t use. AI offers us great opportunities to improve the way we work, to get us started on a creative project, or to complete mundane tasks. However, it is just a tool, and tools complement the range of skills that humans already have. For example, if you gave an AI chatbot app the prompt, ‘Write a setting description using these four phrases: dark, scary, forest, fairy tale’, the first output from the app probably wouldn’t make much sense. As a human, though, you’d probably have to do far less work to edit the output than if you had had to write the setting description from scratch. Now, say you had the perfect example of a setting description, but you wanted 29 more examples, a different version for each learner in your class. This is where AI can help: completing a repetitive task and saving time for humans. 

Child with phone.
Photo by zhenzhong liu.

To help children understand how AI and humans complement each other, ask them the question, ‘What can’t a computer do?’ Answers that I have received before include, ‘Give me a hug’, ‘Make me laugh’, and ‘Paint a picture’, and these are all true. Can Alexa tell you a joke that makes you laugh? Yes — but a human created that joke. The computer is just the way in which it is being shared. Even with AI ‘creating’ new artwork, it is really only using data from something that someone else created. Humans are required. 

Overall, we must remember that young children are part of a world that uses AI, and that it is likely to be ever more present in the future. We need to ensure that they know how to use AI responsibly, by minimising their alternate conceptions. With our youngest learners, this means taking care with the language you choose and the examples you use, and explaining AI’s role as a tool.

To help children understand how AI and humans complement each other, ask them the question, ‘What can’t a computer do?’

These simple approaches are the first steps to empowering children to go on to harness this technology. They also pave the way for you to simply introduce the core concepts of AI in later computing lessons without first having to untangle a web of alternate conceptions.


This article also appears in issue 22 of Hello World, which is all about teaching and AI. Download your free PDF copy now.

If you’re an educator, you can use our free Experience AI Lessons to teach your learners the basics of how AI works, whatever your subject area.

The post AI isn’t just robots: How to talk to young children about AI appeared first on Raspberry Pi Foundation.

Impressions from Coolest Projects South Africa 2023

The day after the successful meetup with our Global Clubs Partner organisations based in Africa, our team and some of our partners enjoyed participating in the Coolest Projects South Africa 2023 event to meet young tech creators and help out as project judges. Here are some of our impressions.

Our team and partners at Coolest Projects South Africa 2023.

A day of Coolest Projects

This is the fourth year of a partner-run, regional version of Coolest Projects — our world-leading showcase for young tech creators — taking place in South Africa, led by David Campey. David is Director of Coder LevelUp, one of our Global Clubs Partners growing and supporting a network of CoderDojos and Code Clubs in the country, and involved in the CoderDojo movement for a whole decade.

A waterbottle with a Coolest Projects South Africa sticker.

There was a buzz of anticipation and excitement at the Cape Town Science Centre as young coders from age 5 to 18 and various backgrounds gathered on this sunny Saturday morning to showcase their coding creations and inventions at Coolest Projects South Africa. From fun games and animations on Scratch, to cool websites created with HTML and CSS, to fantastic Python-based hardware solutions to real-world challenges — every young creator brought along a project they’d created to proudly showcase and celebrate.

Luhle’s language-inspired coding project

While chatting with the creators and discovering what had motivated their projects, we met up with 11-year-old Luhle, who was delighted to take us through the ‘Moon conversation’ animation she had coded in Scratch.

A young tech creator with her Scratch project at Coolest Projects South Africa 2023.
11-year-old Luhle proudly showcases her ‘Moon conversation’ Scratch animation at the Coolest Projects South Africa 2023 event.

The animation involved a Spanish conversation between two people who journeyed to the moon and back. Luhle had created her animation because of her love for languages and in response to a challenge posed to her class by her teacher: to learn 5 languages. While her mother tongue is isiXhosa, she is confident in English, is learning Afrikaans, has started teaching herself Spanish, and would love to learn Korean.

Kayden’s innovative hardware creation

We also met with 16-year-old Kayden, who showcased a project he’d made to address a real-world challenge. He told us he had always struggled to concentrate in class — a challenge that many young people face — and he wanted to build an alternative solution to the established medications. Using vibration sensors and two microcontrollers, he created a digital device to prompt users when they are no longer paying attention in class. With his friend Carl, he successfully tested the device on a meaningful sample of Grade 1–3 learners (ages 7–9).

A young tech creator with his hardware project at Coolest Projects South Africa 2023.
16-year-old Kayden listens intently as one of the Coolest Projects judges, Akwabi Paul from Kenya, commends his invention and advises him on next steps. Listening in are two other judges, Solomon from The Gambia and Sylvester from Malawi.

Kayden is now developing this low-cost innovative solution to include a heart rate monitor to help to detect when a user loses focus, and he wants this to be a solution that’s widely accessible and affordable for all South African children. One of the judges, our partner Akwabi Paul from Tech Kidz Africa in Kenya, was greatly impressed and motivated by Kayden’s work, and took time to advise Kayden on the next steps to turn his invention into a commercial product.

The coding club at CBC St Johns Parklands

During the event we also met members of Mrs Hill’s coding club and learnt about Mrs Hill’s experience of nurturing a love and interest for coding and robotics at CBC St Johns Parklands in Cape Town.

Since 2020, Mrs Hills has been providing coding lessons to all school classes — learners aged 6 to 12 years — as well as an after-school coding and robotics club. She approaches her lessons by introducing and demonstrating coding skills and then presenting her learners with a problem to solve collaboratively. In her words, ‘Learners find more interest in learning practically.’

That’s why Coolest Projects is the perfect fit for her and her young people. 4 of her club members took part in Coolest Projects South Africa 2022. This year, she was proud to enter 11 participants, 3 of whom were chosen as judges’ favourites.

Here’s to the young creators and more Coolest Projects events

After the showcasing and judging, the Coolest Projects South Africa event culminated in a hearty celebration of all that the young tech creators had presented. David Campey’s passion for nurturing coding literacy, digital making skills, and innovative thinking among learners from different walks of life made the whole day a truly enjoyable, inclusive event for the young creators.

Coolest Projects logo.

It was inspiring, no doubt, for our other African partners who participated as judges and are now keen to host Coolest Projects events back in their home countries.  

Get involved in Coolest Projects

If you and your young people based anywhere on the globe feel inspired to showcase digital tech creations, you can get involved in our Coolest Projects 2024 online showcase! It’s free and open to any young tech creator up to age 18.

Sign up to the Coolest Projects newsletter to be the first to hear all updates, for example when showcase registration opens on 14 February.

The post Impressions from Coolest Projects South Africa 2023 appeared first on Raspberry Pi Foundation.

Culturally relevant Computing: Experiences of primary learners

Today’s blog is written by Dr Alex Hadwen-Bennett, who we worked with to find out primary school learners’ experiences of engaging with culturally relevant Computing lessons. Alex is a Lecturer in Computing Education at King’s College London, where he undertakes research focusing on inclusive computing education and the pedagogy of making.

Despite many efforts to make a career in Computing more accessible, many groups of people are still underrepresented in the field. For instance, a 2022 report revealed that only 22% of people currently working in the IT industry in the UK are women. Additionally, among learners who study Computing at schools in England, Black Caribbean students are currently one of the most underrepresented groups. One approach that has been suggested to address this underrepresentation at school is culturally relevant pedagogy.

In a computing classroom, a girl laughs at what she sees on the screen.

For this reason, a particular focus of the Raspberry Pi Foundation’s academic research programme is to support Computing teachers in the use of culturally relevant pedagogy. This pedagogy involves developing learning experiences that deliberately aim to enable all learners to engage with and succeed in Computing, including by bringing their culture and interests into the classroom.

The Foundation’s work in this area started with the development of guidelines for culturally relevant and responsive teaching together with a group of teachers and external researchers. The Foundation’s researchers then explored how a group of Computing teachers employed the guidelines in their own teaching. In a follow-on study funded by Cognizant, the team worked with 13 primary school teachers in England to adapt Computing lessons to make them culturally relevant for their learners. In this process, the teachers adapted a unit on photo editing for Year 4 (ages 8–9), and a unit about vector graphics for Year 5 (ages 9–10). As part of the project, I worked with the Foundation team to analyse and report on data gathered from focus groups of primary learners who had engaged with the adapted units.

At the beginning of this study, teachers adapted two units of work that cover digital literacy skills

Conducting the focus groups

For the focus groups, the Foundation team asked teachers from three schools to each choose four learners to take part. All children in the three focus groups had taken part in all the lessons involving the culturally adapted resources. The children were both boys and girls, and came from diverse cultural backgrounds where possible.

The questions for the focus groups were prepared in advance and covered:

  • Perceptions of Computing as a subject
  • Reflections of their experiences of the engaging with culturally adapted resources
  • Perceptions of who does Computing

Outcomes from the focus groups

“I feel happy that I see myself represented in some way.”

“It was nice to do something that actually represented you in many different ways, like your culture and your background.”

– Statements of learners who participated in the focus groups

When the learners were asked about what they did in their Computing lessons, most of them made references to working with and manipulating graphics; fewer made references to programming and algorithms. This emphasis on graphics is likely related to this being the most recent topic the learners engaged with. The learners were also asked about their reflections on the culturally adapted graphics unit that they had recently completed. Many of them felt that the unit gave them the freedom to incorporate things that related to their interests or culture. The learners’ responses also suggested that they felt represented in the work they completed during the unit. Most of them indicated that their interests were acknowledged, whereas fewer mentioned that they felt their cultural backgrounds were highlighted.

“Anyone can be good at computing if they have the passion to do it.”

– Statement by a learner who participated in a focus group

When considering who does computing, the learners made multiple references to people who keep trying or do not give up. Whereas only a couple of learners said that computer scientists need to be clever or intelligent to do computing. A couple of learners suggested that they believed that anyone can do computing. It is encouraging that the learners seemed to associate being good at computing with effort rather than with ability. However, it is unclear whether this is associated with the learners engaging with the culturally adapted resources.

Reflections and next steps

While this was a small-scale study, the focus groups findings do suggest that engaging with culturally adapted resources can make primary learners feel more represented in their Computing lessons. In particular, engaging with an adapted unit led learners to feel that their interests were recognised as well as, to a lesser extent, their cultural backgrounds. This suggests that primary-aged learners may identify their practical interests as the most important part of their background, and want to share this in class.

Two children code on laptops while an adult supports them.

Finally, the responses of the learners suggest that they feel that perseverance is a more important quality than intelligence for success in computing and that anyone can do it. While it is not possible to say whether this is directly related to their engagement with a culturally adapted unit, it would be an interesting area for further research.

More information and resources

You can find out more about culturally relevant pedagogy and the Foundation’s research on it, for example by:

The Foundation would like to extend thanks to Cognizant for funding this research, and to the primary computing teachers and learners who participated in the project. 

The post Culturally relevant Computing: Experiences of primary learners appeared first on Raspberry Pi Foundation.

Engaging primary Computing teachers in culturally relevant pedagogy through professional development

Underrepresentation in computing is a widely known issue, in industry and in education. To cite some statistics from the UK: a Black British Voices report from August 2023 noted that 95% of respondents believe the UK curriculum neglects black lives and experiences; fewer students from working class backgrounds study GCSE Computer Science; when they leave formal education, fewer female, BAME, and white working class people are employed in the field of computer science (Kemp 2021); only 21% of GCSE Computer Science students, 15% at A level, and 22% at undergraduate level are female (JCQ 2020, Ofqual 2020, UCAS 2020); students with additional needs are also underrepresented.

In a computing classroom, two girls concentrate on their programming task.

Such statistics have been the status quo for too long. Many Computing teachers already endeavour to bring about positive change where they can and engage learners by including their interests in the lessons they deliver, so how can we support them to do this more effectively? Extending the reach of computing so that it is accessible to all also means that we need to consider what formal and informal values predominate in the field of computing. What is the ‘hidden’ curriculum in computing that might be excluding some learners? Who is and who isn’t represented?

Katharine Childs.
Katharine Childs (Raspberry Pi Foundation)

In a recent research seminar, Katharine Childs from our team outlined a research project we conducted, which included a professional development workshop to increase primary teachers’ awareness of and confidence in culturally relevant pedagogy. In the workshop, teachers considered how to effectively adapt curriculum materials to make them culturally relevant and engaging for the learners in their classrooms. Katharine described the practical steps teachers took to adapt two graphics-related units, and invited seminar participants to apply their learning to a graphics activity themselves.

What is culturally relevant pedagogy?

Culturally relevant pedagogy is a teaching framework which values students’ identities, backgrounds, knowledge, and ways of learning. By drawing on students’ own interests, experiences and cultural knowledge educators can increase the likelihood that the curriculum they deliver is more relevant, engaging and accessible to all.

The idea of culturally relevant pedagogy was first introduced in the US in the 1990s by African-American academic Gloria Ladson-Billings (Ladson-Billings 1995). Its aim was threefold: to raise students’ academic achievement, to develop students’ cultural competence and to promote students’ critical consciousness. The idea of culturally responsive teaching was later advanced by Geneva Gay (2000) and more recently  brought into focus in US computer science education by Kimberly Scott and colleagues (2015). The approach has been localised for England by Hayley Leonard and Sue Sentance (2021) in work they undertook here at the Foundation.

Ten areas of opportunity

Katharine began her presentation by explaining that the professional development workshop in the Primary culturally adapted resources for computing project built on two of our previous research projects to develop guidelines for culturally relevant and responsive computing and understand how teachers used them in practice. This third project ran as a pilot study funded by Cognizant, starting in Autumn 2022 with a one-day, in-person workshop for 13 primary computing teachers.

The research structure was a workshop followed by research adaption, then delivery of resources, and evaluation through a parent survey, teacher interviews, and student focus groups.

Katharine then introduced us to the 10 areas of opportunity (AO) our research at the Raspberry Pi Computing Education Research Centre had identified for culturally relevant pedagogy. These 10 areas were used as practical prompts to frame the workshop discussions:

  1. Find out about learners
  2. Find out about ourselves as teachers
  3. Review the content
  4. Review the context
  5. Make the learning accessible to all
  6. Provide opportunities for open-ended and problem solving activities
  7. Promote collaboration and structured group discussion
  8. Promote student agency through choice
  9. Review the learning environment
  10. Review related policies, processes, and training in your school and department

At first glance it is easy to think that you do most of those things already, or to disregard some items as irrelevant to the computing curriculum. What would your own cultural identity (see AO2) have to do with computing, you might wonder. But taking a less complacent perspective might lead you to consider all the different facets that make up your identity and then to think about the same for the students you teach. You may discover that there are many areas which you have left untapped in your lesson planning.

Two young people learning together at a laptop.

Katharine explained how this is where the professional development workshop showed itself as beneficial for the participants. It gave teachers the opportunity to reflect on how their cultural identity impacted on their teaching practices — as a starting point to learning more about other aspects of the culturally relevant pedagogy approach.

Our researchers were interested in how they could work alongside teachers to adapt two computing units to make them more culturally relevant for teachers’ specific contexts. They used the Computing Curriculum units on Photo Editing (Year 4) and Vector Graphics (Year 5).

A slide about adapting an emoji teaching activity to make it culturally relevant.

Katharine illustrated some of the adaptations teachers and researchers working together had made to the emoji activity above, and which areas of opportunity (AO) had been addressed; this aspect of the research will be reported in later publications.

Results after the workshop

Although the number of participants in this pilot study was small, the findings show that the professional development workshop significantly increased teachers’ awareness of culturally relevant pedagogy and their confidence in adapting resources to take account of local contexts:

  • After the workshop, 10/13 teachers felt more confident to adapt resources to be culturally relevant for their own contexts, and 8/13 felt more confident in adapting resources for others.
  • Before the workshop, 5/13 teachers strongly agreed that it was an important part of being a computing teacher to examine one’s own attitudes and beliefs about race, gender, disabilities, sexual orientation. After the workshop, the number in agreement rose to 12/13.
  • After the workshop, 13/13 strongly agreed that part of a computing teacher’s responsibility is to challenge teaching practices which maintain social inequities (compared to 7/13 previously).
  • Before the workshop, 4/13 teachers strongly agreed that it is important to allow student choice when designing computing activities; this increased to 9/13 after the workshop.

These quantitative shifts in perspective indicate a positive effect of the professional development pilot. 

Katharine described that in our qualitative interviews with the participating teachers, they expressed feeling that their understanding of culturally relevant pedagogy had increased and they recognized the many benefits to learners of the approach. They valued the opportunity to discuss their contexts and to adapt materials they currently used with other teachers, because it made it a more ‘authentic’ and practical professional development experience.

The seminar ended with breakout sessions inviting viewers to consider possible adaptations that could be made to the graphics activities which had been the focus of the workshop.

In the breakout sessions, attendees also discussed specific examples of culturally relevant teaching practices that had been successful in their own classrooms, and they considered how schools and computing educational initiatives could support teachers in their efforts to integrate culturally relevant pedagogy into their practice. Some attendees observed that it was not always possible to change schemes of work without a ‘whole-school’ approach, senior leadership team support, and commitment to a research-based professional development programme.

Where do you see opportunities for your teaching?

The seminar reminds us that the education system is not culture neutral and that teachers generally transmit the dominant culture (which may be very different from their students’) in their settings (Vrieler et al, 2022). Culturally relevant pedagogy is an attempt to address the inequities and biases that exist, which result in many students feeling marginalised, disenfranchised, or underachieving. It urges us to incorporate learners’ cultures and experiences in our endeavours  to create a more inclusive computing curriculum; to adopt an intersectional lens so that all can thrive.

Secondary school age learners in a computing classroom.

As a pilot study, the workshop was offered to a small cohort of 13, yet the findings show that the intervention significantly increased participants’ awareness of culturally relevant pedagogy and their confidence in adapting resources to take account of local contexts.

Of course there are many ways in which teachers already adapt resources to make them interesting and accessible to their pupils. Further examples of the sort of adaptations you might make using these areas of opportunity include:

  • AO1: You could find out to what extent learners feel like they ‘belong’ or are included in a particular computing-related career. This is sure to yield valuable insights into learners’ knowledge and/or preconceptions of computing-related careers. 
  • AO3: You could introduce topics such as the ethics of AI, data bias, investigations of accessibility and user interface design. 
  • AO4: You might change the context of a unit of work on the use of conditional statements in programming, from creating a quiz about ‘Vikings’ to focus on, for example, aspects of youth culture which are more engaging to some learners such as football or computer games, or to focus on religious celebrations, which may be more meaningful to others.
  • AO5: You could experiment with a particular pedagogical approach to maximise the accessibility of a unit of work. For example, you could structure a programming unit by using the PRIMM model, or follow the Universal Design for Learning framework to differentiate for diversity.
  • AO6/7: You could offer more open-ended and collaborative activities once in a while, to promote engagement and to allow learners to express themselves autonomously.
  • AO8: By allowing learners to choose topics which are relevant or familiar to their individual contexts and identities, you can increase their feeling of agency. 
  • AO9: You could review both your learning materials and your classroom to ensure that all your students are fully represented.
  • AO10: You can bring colleagues on board too; the whole enterprise of embedding culturally relevant pedagogy will be more successful when school- as well as department-level policies are reviewed and prioritised.

Can you see an opportunity for integrating culturally relevant pedagogy in your classroom? We would love to hear about examples of culturally relevant teaching practices that you have found successful. Let us know your thoughts or questions in the comments below.

You can watch Katharine’s seminar here:

You can download her presentation slides on our ‘previous seminars’ page, and you can read her research paper.

To get a practical overview of culturally relevant pedagogy, read our 2-page Quick Read on the topic and download the guidelines we created with a group of teachers and academic specialists.

Tomorrow we’ll be sharing a blog about how the learners who engaged with the culturally adapted units found the experience, and how it affected their views of computing. Follow us on social media to not miss it!

Join our upcoming seminars live

On 12 December we’ll host the last seminar session in our series on primary (K-5) computing. Anaclara Gerosa will share her work on how to design and structure early computing activities that promote and scaffold students’ conceptual understanding. As always, the seminar is free and takes place online at 17:00–18:30 GMT / 12:00–13:30 ET / 9:00–10:30 PT / 18:00–19:30 CET. Sign up and we’ll send you the link to join on the day.

In 2024, our new seminar series will be about teaching and learning programming, with and without AI tools. If you’re signed up to our seminars, you’ll receive the link to join every monthly seminar.

The post Engaging primary Computing teachers in culturally relevant pedagogy through professional development appeared first on Raspberry Pi Foundation.

Creating connections at our 2023 Africa partner meetup

We partner with organisations around the world to bring coding activities to young people in their regions through Code Club and CoderDojo. Currently involving 54 organisations in 43 countries, this Global Clubs Partner network shares our passion for educating kids to create with technology.

Global Clubs Partners in Africa.

We work to connect our Global Clubs Partners to foster a sense of community and encourage collaboration. As part of this, we run in-person meetups to allow our partners to get to know each other better, and to help us understand how we can best support them, and what we can learn from them. Previously held in Penang, Malaysia, and Almere, the Netherlands, our latest meetup took place in Cape Town, South Africa.

Connecting through stories and experiences

Although we’ve seen some surprising points of commonality among all Global Clubs Partners, we also know that our partners find it helpful to connect with organisations based in their region. For the Cape Town meetup, we invited partner organisations from across Africa, hoping to bring together as many people as possible.

Global Clubs Partners in Africa.

Our aim was to give our partners the opportunity to share their work and identify and discuss common questions and issues. We also wanted to mitigate some of the challenges of working internationally, such as time constraints, time zones, and internet connectivity, so that everyone could focus on connecting with each other.

Global Clubs Partners in Africa.

The meetup agenda included time for each Global Clubs Partner organisation to present their work and future plans, as well as time for discussions on growing and sustaining club volunteer and mentor communities, strategy for 2024, and sharing resources. 

“If the only thing rural communities have is problems, why are people still living there? … Rural communities have gifts, have skills, they have history that is wasting away right now; nobody is capturing it. They have wisdom and assets.”

Damilola Fasoranti from Prikkle Academy, Nigeria, talking about not making assumptions about rural communities and how this shapes the work his organisation does

A group dinner after the meetup enabled more informal networking. The next day, everyone had the chance to get inspired at Coolest Projects South Africa, a regional Coolest Projects event for young tech creators organised by partner organisation Coder LevelUp.

Global Clubs Partners in Africa.

The meetup gave the Global Clubs Partners time to talk to each other about their work and experiences and understand one another better. It was also very beneficial for our team: we learned more about how we can best support partners to work in their communities, whether through new resources, information about funding applications, or best practice in overcoming challenges.

Building bridges

After attending a previous meetup, two of our partner organisations had decided to create an agreement for future partnership. We were delighted to learn about this collaboration, and to witness the signing of the agreement at this meetup.

Global Clubs Partners in Africa.

By continuing to bring our partner network together, we hope to foster more cross-organisation partnerships like this around the world that will strengthen the global movement for democratising computing education.

Could your organisation become a Global Clubs Partner?

You can find out how your organisation could join our Global Clubs Partner network on the CoderDojo and Code Club websites, or contact us directly with your questions or ideas about a partnership.

The post Creating connections at our 2023 Africa partner meetup appeared first on Raspberry Pi Foundation.

Experience AI: Making AI relevant and accessible

Par : Jan Ander

Google DeepMind’s Aimee Welch discusses our partnership on the Experience AI learning programme and why equal access to AI education is key. This article also appears in issue 22 of Hello World on teaching and AI.

From AI chatbots to self-driving cars, artificial intelligence (AI) is here and rapidly transforming our world. It holds the potential to solve some of the biggest challenges humanity faces today — but it also has many serious risks and inherent challenges, like reinforcing existing patterns of bias or “hallucinating”, a term that describes AI making up false outputs that do not reflect real events or data.

A teenager learning computer science.
Young people need the knowledge and skills to navigate and shape AI.

Teachers want to build young people’s AI literacy

As AI becomes an integral part of our daily lives, it’s essential that younger generations gain the knowledge and skills to navigate and shape this technology. Young people who have a foundational understanding of AI are able to make more informed decisions about using AI applications in their daily lives, helping ensure safe and responsible use of the technology. This has been recognised for example by the UK government’s AI Council, whose AI Roadmap sets out the goal of ensuring that every child in the UK leaves school with a basic sense of how AI works.

Learner in a computing classroom.
Every young person should have access to learning AI literacy.

But while AI literacy is a key skill in this new era, not every young person currently has access to sufficient AI education and resources. In a recent survey by the EdWeek Research Center in the USA, only one in 10 teachers said they knew enough about AI to teach its basics, and very few reported receiving any professional development related to the topic. Similarly, our work with the Raspberry Pi Computing Education Research Centre has suggested that UK-based teachers are eager to understand more about AI and how to engage their students in the topic.

Bringing AI education into classrooms

Ensuring broad access to AI education is also important to improve diversity in the field of AI to ensure safe and responsible development of the technology. There are currently stark disparities in the field and these start already early on, with school-level barriers contributing to underrepresentation of certain groups of people. By increasing diversity in AI, we bring diverse values, hopes, and concerns into the design and deployment of the technology — something that’s critical for AI to benefit everyone.

Kenyan children work on a physical computing project.
Bringing diverse values into AI is critical.

By focusing on AI education from a young age, there is an opportunity to break down some of these long-standing barriers. That’s why we partnered with the Raspberry Pi Foundation to co-create Experience AI, a new learning programme with free lesson plans, slide decks, worksheets and videos, to address gaps in AI education and support teachers in engaging and inspiring young people in the subject.

The programme aims to help young people aged 11–14 take their first steps in understanding the technology, making it relevant to diverse learners, and encouraging future careers in the field. All Experience AI resources are freely available to every school across the UK and beyond.

A woman teacher helps a young person with a coding project.
The Experience AI resources are free for every school.

The partnership is built on a shared vision to make AI education more inclusive and accessible. Bringing together the Foundation’s expertise in computing education and our cutting-edge technical knowledge and industry insights has allowed us to create a holistic learning experience that connects theoretical concepts and practical applications.

Experience AI: Informed by AI experts

A group of 15 research scientists and engineers at Google DeepMind contributed to the development of the lessons. From drafting definitions for key concepts, to brainstorming interesting research areas to highlight, and even featuring in the videos included in the lessons, the group played a key role in shaping the programme in close collaboration with the Foundation’s educators and education researchers.

Interview for Experience AI at Google DeepMind.
Interviews with AI scientists and engineers at Google DeepMind are part of Experience AI.

To bring AI concepts to life, the lessons include interactive activities as well as real-life examples, such as a project where Google DeepMind collaborated with ecologists and conservationists to develop machine learning methods to study the behaviour of an entire animal community in the Serengeti National Park and Grumeti Reserve in Tanzania.

Elephants in the Serengeti.
One of the Experience AI lessons focuses on an AI-enabled research project in the Serengeti.

Member of the working group, Google DeepMind Research Scientist Petar Veličković, shares: “AI is a technology that is going to impact us all, and therefore educating young people on how to interact with this technology is likely going to be a core part of school education going forward. The project was eye-opening and humbling for me, as I learned of the challenges associated with making such a complex topic accessible — not only to every pupil, but also to every teacher! Observing the thoughtful approach undertaken by the Raspberry Pi Foundation left me deeply impressed, and I’m taking home many useful ideas that I hope to incorporate in my own AI teaching efforts going forward.”

The lessons have been carefully developed to:

  • Follow a clear learning journey, underpinned by the SEAME framework which guides learners sequentially through key concepts and acts as a progression framework.
  • Build foundational knowledge and provide support for teachers. Focus on teacher training and support is at the core of the programme.
  • Embed ethics and responsibility. Crucially, key concepts in AI ethics and responsibility are woven into each lesson and progressively built on. Students are introduced to concepts like data bias, user-focused approaches, model cards, and how AI can be used for social good. 
  • Ensure cultural relevance and inclusion. Experience AI was designed with diverse learners in mind and includes a variety of activities to enable young people to pick topics that most interest them. 

What teachers say about the Experience AI lessons

To date, we estimate the resources have reached 200,000+ students in the UK and beyond. We’re thrilled to hear from teachers already using the resources about the impact they are having in the classroom, such as Mrs J Green from Waldegrave School in London, who says: “I thought that the lessons covered a really important topic. Giving the pupils an understanding of what AI is and how it works will become increasingly important as it becomes more ubiquitous in all areas of society. The lessons that we trialled took some of the ‘magic’ out of AI and started to give the students an understanding that AI is only as good as the data that is used to build it. It also started some really interesting discussions with the students around areas such as bias.”

An educator points to an image on a student's computer screen.
Experience AI offers support for teachers.

At North Liverpool Academy, teacher Dave Cross tells us: “AI is such a current and relevant topic in society that [these lessons] will enable Key Stage 3 computing students [ages 11–14] to gain a solid foundation in something that will become more prevalent within the curriculum, and wider subjects too as more sectors adopt AI and machine learning as standard. Our Key Stage 3 computing students now feel immensely more knowledgeable about the importance and place that AI has in their wider lives. These lessons and activities are engaging and accessible to students and educators alike, whatever their specialism may be.”

A stronger global AI community

Our hope is that the Experience AI programme instils confidence in both teachers and students, helping to address some of the critical school-level barriers leading to underrepresentation in AI and playing a role in building a stronger, more inclusive AI community where everyone can participate irrespective of their background. 

Children in a Code Club in India.

Today’s young people are tomorrow’s leaders — and as such, educating and inspiring them about AI is valuable for everybody.

Teachers can visit experience-ai.org to download all Experience AI resources for free.

We are now building a network of educational organisations around the world to tailor and translate the Experience AI resources so that more teachers and students can engage with them and learn key AI literacy skills. Find out more.

The post Experience AI: Making AI relevant and accessible appeared first on Raspberry Pi Foundation.

Spotlight on teaching programming with and without AI in our 2024 seminar series

How do you best teach programming in school? It’s one of the core questions for primary and secondary computing teachers. That’s why we’re making it the focus of our free online seminars in 2024. You’re invited to attend and hear about the newest research about the teaching and learning of programming, with or without AI tools.

Two smiling adults learn about computing at desktop computers.

Building on the success and the friendly, accessible session format of our previous seminars, this coming year we will delve into the latest trends and innovative approaches to programming education in school.

Secondary school age learners in a computing classroom.

Our online seminars are for everyone interested in computing education

Our monthly online seminars are not only for computing educators but also for everyone else who is passionate about teaching young people to program computers. The seminar participants are a diverse community of teachers, technology enthusiasts, industry professionals, coding club volunteers, and researchers.

Two adults learn about computing at desktop computers.

With the seminars we aim to bridge the gap between the newest research and practical teaching. Whether you are an educator in a traditional classroom setting or a mentor guiding learners in a CoderDojo or Code Club, you will gain insights from leading researchers about how school-age learners engage with programming. 

What to expect from the seminars

Each online seminar begins with an expert presenter delivering their latest research findings in an accessible way. We then move into small groups to encourage discussion and idea exchange. Finally, we come back together for a Q&A session with the presenter.

Here’s what attendees had to say about our previous seminars:

“As a first-time attendee of your seminars, I was impressed by the welcoming atmosphere.”

“[…] several seminars (including this one) provided valuable insights into different approaches to teaching computing and technology.”

“I plan to use what I have learned in the creation of curriculum […] and will pass on what I learned to my team.”

“I enjoyed the fact that there were people from different countries and we had a chance to see what happens elsewhere and how that may be similar and different to what we do here.”

January seminar: AI-generated Parson’s Problems

Computing teachers know that, for some students, learning about the syntax of programming languages is very challenging. Working through Parson’s Problem activities can be a way for students to learn to make sense of the order of lines of code and how syntax is organised. But for teachers it can be hard to precisely diagnose their students’ misunderstandings, which in turn makes it hard to create activities that address these misunderstandings.

A group of students and a teacher at the Coding Academy in Telangana.

At our first 2024 seminar on 9 January, Dr Barbara Ericson and Xinying Hou (University of Michigan) will present a promising new approach to helping teachers solve this difficulty. In one of their studies, they combined Parsons Problems and generative AI to create targeted activities for students based on the errors students had made in previous tasks. Thus they were able to provide personalised activities that directly addressed gaps in the students’ learning.

Sign up now to join our seminars

All our seminars start at 17:00 UK time (18:00 CET / 12:00 noon ET / 9:00 PT) and are held online on Zoom. To ensure you don’t miss out, sign up now to receive calendar invitations, and access links for each seminar on the day.

If you sign up today, we’ll also invite you to our 12 December seminar with Anaclara Gerosa (University of Glasgow) about how to design and structure of computing activities for young learners, the final session in our 2023 series about primary (K-5) computing education.

The post Spotlight on teaching programming with and without AI in our 2024 seminar series appeared first on Raspberry Pi Foundation.

Coolest Projects is back in 2024

Big news for young tech creators: Coolest Projects will return in 2024. The world’s leading showcase for young creators of digital tech will be open for registration in the online gallery, and we want young people worldwide to showcase their tech projects.

In 2024, we are hosting the Coolest Projects online showcase and livestream celebration for all young creators around the world, and also in-person events in the UK and Ireland for young creators who live there.

A girl presenting a digital making project

Key dates for Coolest Projects 2024

All young tech creators can take part — for free — in the Coolest Projects online showcase:

  • Registration opens: 14 February 2024
  • Registration closes: 22 May 2024
  • Celebratory livestream with announcement of the judges’ favourite projects: 26 June 2024
A young person using Raspberry Pi hardware and learning resources to do digital making

How does Coolest Projects work?

Coolest Projects is an opportunity for young tech creators to share what they have made with the world. Young people register their tech creations to show them in the Coolest Projects online showcase gallery. Alongside mentors, parents, friends, and family members in their local and global communities, they can explore the gallery and celebrate what they and their peers have made.

Who can take part?

  • Coolest Projects is open to all tech creators up to age 18
  • Tech creators of all experience levels are encouraged to participate
  • Creators can take part individually or in teams of up to five
  • Creators can live in any place in the world
  • Participation is free
A boy participating in Coolest Projects shows off his tech project together with an adult.

What kinds of tech projects can be part of Coolest Projects?

  • All projects are welcome, whether they are beginner, advanced, or something in between
  • Projects can be registered in six categories: Scratch, games, web, mobile apps, hardware, and advanced programming
  • We love to see works in progress, so projects don’t need to be completed to be registered
  • Creators can choose a topic for their project, for example community, environment, health, fun, art, education, or identity
A group of young women present a robot buggy they have built.

What happens after registration?

  • The online gallery is open for young tech creators to explore to see what their peers all over the world have made
  • Judges evaluate projects based on their coolness, complexity, design, usability, and presentation, and give feedback to creators about their projects
  • Judges pick some of their favourite projects to highlight, and every participant gets a unique certificate and some fun digital swag
  • Participants and the whole global Coolest Projects community celebrates young tech creators’ ingenuity on our livestream on 26 June
Four young coders show off their tech project for Coolest Projects.

How can young people get started with their projects?

If your kids want to learn about creating with technology, check out our free guided coding project paths. These paths are designed to support all young people to learn how to make their own tech projects and develop their coding skills. For example:

  • For young people who are completely new to coding, our Introduction to Scratch path is a great place to start
  • If young people would like to create their own website, for example to share information about a cause they care about, they can follow our Intro to web path
  • The Introduction to Unity path is perfect for more experienced creators who are keen to build interactive 3D worlds

Young creators can take a look at the Coolest Projects 2023 online showcase gallery for inspiration if they are not sure what they want to make. You can also watch the story of Zaahra and Eesa, siblings who participated in Coolest Projects 2020.

Coolest Projects in-person events: Ireland and the UK

If you are a young creator in Northern Ireland, the Republic of Ireland, or the UK, then Coolest Projects is also coming to you in person in 2024. Participants will be able to meet other young tech creators, connect to their community, and celebrate each other’s creations. Young people are encouraged to take part in both the Coolest Projects global online showcase and their local in-person event.

Coolest Projects Ireland

  • Registration opens: 31 January 2024
  • Registration closes: 20 March 2024
  • Event day: 13 April 2024
The exhibition hall at Coolest Projects Ireland 2023.
Coolest Projects Ireland 2023

Coolest Projects Ireland will take place at DCU St Patrick’s College Campus, Drumcondra in Dublin. It’s open to young creators in Northern Ireland and the Republic of Ireland, and their families and friends are invited to come along to celebrate them and see all the incredible projects on show. Participants can apply for partial bursaries for the costs of attending the event.

Coolest Projects UK

Very soon we will announce the date and venue for Coolest Projects UK for all young creators in the UK. Sign up for email updates to be the first to hear about it. We will also share full details of each in-person event on the Coolest Projects website when registration opens.

A young person creating a project at a laptop. An adult is sat next to them.

If you live in another country…

If there’s not an in-person Coolest Projects event near you, you can still join in the fun: the Coolest Projects online showcase is open to any young creator aged up to 18, from anywhere in the world. We also work with brilliant partner organisations around the world to bring Coolest Projects events to their countries and communities. Sign up to the Coolest Projects newsletter to be the first to know about any in-person event in your country.

What’s next?

Coolest Projects registration opens soon in 2024, and young creators can start thinking of ideas and working on their projects now. Or if young people have already made something they are really proud of, they can showcase that creation once registration is open.

Coolest Projects logo.

Sign up for email updates to always get the latest news about all things Coolest Projects, from event updates to the fun swag coming for 2024.

The post Coolest Projects is back in 2024 appeared first on Raspberry Pi Foundation.

Evolving our online courses to help more people be computing educators

Since launching our free online courses about computing on the edX platform back in August, we’ve been training course facilitators and analysing the needs of educators around the world. We want every course participant to have a great experience learning with us — read on to find out what we’re doing right now and into 2024 to ensure this.

Workshop attendees at a table.

Online courses for all adults who support young people

Educators of all kinds are key for supporting children and young people to engage with computing technology and develop digital skills. You might be a professional teacher, or a parent, volunteer, youth worker, librarian… there are so many roles in which people share knowledge with young learners.

Young people and an adult mentor at a computer at Coolest Projects Ireland 2023.

That’s why our online courses are designed to support any kind of educator to:

  • Understand the full breadth of topics within computing
  • Discover how to introduce computing to young people in clear and exciting ways that are grounded in the latest research

We are constantly improving our online courses based on your feedback, the latest education research, and the insights our team members gain through supporting you on your course learning journeys. Three principles guide these improvements: accessibility, scalability, and sustainability. 

Making our courses more relevant and accessible

Our online courses are used by people who live around the world and bring various knowledge and experiences. Some participants are classroom teachers, others have computing experience from their job and want to volunteer at a kids’ coding club, and some may be parents who want to support their children. It’s important to us that our courses are relevant and accessible to all kinds of adult learners. 

A parent and child work together at a Raspberry Pi computer.

We’re currently working to: 

  • Simplify the English in the courses for participants who speak it as a second language
  • Adapt the course activities for specific settings where participants help young people learn so that e.g. teachers see how the activities work in the classroom, and volunteers who run coding clubs see how they work in club sessions
  • Ensure our course facilitators have experience in a range of different settings including coding clubs, and in a variety of different contexts around the world

Making our courses useful for more groups of people

When we think about the scalability of our courses, we think about how to best support as many educators around the world as possible. If we can make the jobs of all educators easier, whatever their setting is like, then we are making the right choices.

An educator helps two young people at a computer.

We’re currently working to: 

  • Talk with the global network of educators we’re a part of to better understand what works for them so we can reflect that in the courses
  • Include a wider range of examples for settings beyond the classroom in the courses
  • Adapt our courses so they are relevant to participants with various needs while sustaining the high quality of the overall learning experience

Making the learning from our courses sustainable

The educators who take our courses work to achieve amazing things, and this means they are often busy. That they take the time to complete one of our courses to learn new things is a commitment we want to make sure is rewarded. The learning you get from participating in our online courses should continue to benefit you far beyond the time you spend completing it. This is what we mean by sustainability.

Kenyan educators work on a physical computing project.

We’re currently working to: 

  • Lay out clear learning pathways so you can build on the knowledge you gain in one course in the next course
  • Offer course resources that are easy to access after you’ve completed the course
  • Explore ways to build communities around our courses where you can share successes and learning outcomes with your fellow participants

Learn with us, and help us design better courses for you

Our work to improve the accessibility, scalability, and sustainability of our courses will continue into 2024, and these three principles will likely be part of our online training strategy for the following year too. 

If you’d like to support young people in your life to learn about computing and digital technologies, take one of our free courses now and learn something new. We have twenty courses available right now and they are totally free.

We are also looking for adult testers for new course content. So if you’re any kind of educator and would like to test upcoming online course content and share your feedback and experiences, please send us a message with the subject ‘Educator training’. 

The post Evolving our online courses to help more people be computing educators appeared first on Raspberry Pi Foundation.

Support for new computing teachers: A tool to find Scratch programming errors

We all know that learning to program, and specifically learning how to debug or fix code, can be frustrating and leave beginners overwhelmed and disheartened. In a recent blog article, our PhD student Lauria at the Raspberry Pi Computing Education Research Centre highlighted the pivotal role that teachers play in shaping students’ attitudes towards debugging. But what about teachers who are coding novices themselves?

Two adults learn about computing at desktop computers.

In many countries, primary school teachers are holistic educators and often find themselves teaching computing despite having little or no experience in the field. In a recent seminar of our series on computing education for primary-aged children, Luisa Greifenstein told attendees that struggling with debugging and negative attitudes towards programming were among the top ten challenges mentioned by teachers.

Luisa Greifenstein.

Luisa is a researcher at the University of Passau, Germany, and has been working closely with both teacher trainees and experienced primary school teachers in Germany. She’s found that giving feedback to students can be difficult for primary school teachers, and especially for teacher trainees, as programming is still new to them. Luisa’s seminar introduced a tool to help.

A unique approach: Visualising debugging with LitterBox

To address this issue, the University of Passau has initiated the primary::programming project. One of its flagship tools, LitterBox, offers a unique solution to debugging and is specifically designed for Scratch, a beginners’ programming language widely used in primary schools.

A screenshot from the LitterBox tool.
You can upload Scratch program files to LitterBox to analyse them. Click to enlarge.

LitterBox serves as a static code debugging tool that transforms code examination into an engaging experience. With a nod to the Scratch cat, the tool visualises the debugging of Scratch code as checking the ‘litterbox’, categorising issues into ‘bugs’ and ‘smells’:

  • Bugs represent code patterns that have gone wrong, such as missing loops or specific blocks
  • Smells indicate that the code couldn’t be processed correctly because of duplications or unnecessary elements
A screenshot from the LitterBox tool.
The code patterns LitterBox recognises. Click to enlarge.

What sets LitterBox apart is that it also rewards correct code by displaying ‘perfumes’. For instance, it will praise correct broadcasting or the use of custom blocks. For every identified problem or achievement, the tool provides short and direct feedback.

A screenshot from the LitterBox tool.
LitterBox also identifies good programming practice. Click to enlarge.

Luisa and her team conducted a study to gauge the effectiveness of LitterBox. In the study, teachers were given fictitious student code with bugs and were asked to first debug the code themselves and then explain in a manner appropriate to a student how to do the debugging.

The results were promising: teachers using LitterBox outperformed a control group with no access to the tool. However, the team also found that not all hints proved equally helpful. When hints lacked direct relevance to the code at hand, teachers found them confusing, which highlighted the importance of refining the tool’s feedback mechanisms.

A bar chart showing that LitterBox helps computing teachers.

Despite its limitations, LitterBox proved helpful in another important aspect of the teachers’ work: coding task creation. Novice students require structured tasks and help sheets when learning to code, and teachers often invest substantial time in developing these resources. While LitterBox does not guide educators in generating new tasks or adapting them to their students’ needs, in a second study conducted by Luisa’s team, teachers who had access to LitterBox not only received support in debugging their own code but also provided more scaffolding in task instructions they created for their students compared to teachers without LitterBox.

How to maximise the impact of new tools: use existing frameworks and materials

One important realisation that we had in the Q&A phase of Luisa’s seminar was that many different research teams are working on solutions for similar challenges, and that the impact of this research can be maximised by integrating new findings and resources. For instance, what the LitterBox tool cannot offer could be filled by:

  • Pedagogical frameworks to enhance teachers’ lessons and feedback structures. Frameworks such as PRIMM (Predict, Run, Investigate, Modify, and Make) or TIPP&SEE for Scratch projects (Title, Instructions, Purpose, Play & Sprites, Events, Explore) can serve as valuable resources. These frameworks provide a structured approach to lesson design and teaching methodologies, making it easier for teachers to create engaging and effective programming tasks. Additionally, by adopting semantic waves in the feedback for teachers and students, a deeper understanding of programming concepts can be fostered. 
  • Existing courses and materials to aid task creation and adaptation. Our expert educators at the Raspberry Pi Foundation have not only created free lesson plans and courses for teachers and educators, but also dedicated non-formal learning paths for Scratch, Python, Unity, web design, and physical computing that can serve as a starting point for classroom tasks.

Exploring innovative ideas in computing education

As we navigate the evolving landscape of programming education, it’s clear that innovative tools like LitterBox can make a significant difference in the journey of both educators and students. By equipping educators with effective debugging and task creation solutions, we can create a more positive and engaging learning experience for students.

If you’re an educator, consider exploring how such tools can enhance your teaching and empower your students in their coding endeavours.

You can watch the recording of Luisa’s seminar here:

Sign up now to join our next seminar

If you’re interested in the latest developments in computing education, join us at one of our free, monthly seminars. In these sessions, researchers from all over the world share their innovative ideas and are eager to discuss them with educators and students. In our December seminar, Anaclara Gerosa (University of Edinburgh) will share her findings about how to design and structure early-years computing activities.

This will be the final seminar in our series about primary computing education. Look out for news about the theme of our 2024 seminar series, which are coming soon.

The post Support for new computing teachers: A tool to find Scratch programming errors appeared first on Raspberry Pi Foundation.

Celebrating the community: St Joseph’s Secondary School

In our series of community stories, we celebrate some of the amazing young people and educators who are using their passion for technology to create positive change in the world around them. 

A group of students at secondary schools.

In our latest story, we’re sharing the inspiring journey of St Joseph’s Secondary School in Rush, Ireland. Over the past few years, the school community has come together to encourage coding and digital skills, harnessing the European Astro Pi Challenge as an opportunity to kindle students’ enthusiasm for tech and teamwork. 

We caught up with some of the educators and students at St Joseph’s, fresh off the success of their participation in another round of Astro Pi, to delve a little deeper into the school’s focus on making opportunities to engage with computing technologies accessible to all.

Introducing St Joseph’s Secondary School

St Joseph’s Secondary School is in the heart of Rush, a rural town steeped in agricultural heritage. The school houses a diverse student population coming from the local multigenerational farming families as well as families who’ve been drawn to Rush more recently by its beautiful countryside and employment opportunities. St Joseph’s leadership team has responded to the changing demographics and increase of its student population by adapting and growing the school’s curriculum to meet the evolving needs of the young people and help them build a strong community.

A group of students at a computer at secondary schools.
Working as teams for the Astro Pi Challenge has helped the St Joseph’s students connect and support each other as a community.

One of the school’s most popular initiatives has been teaching coding from first year (ages 12–13). This proactive approach has resonated with many students, including Kamaya, a member of the school’s 2022/23 Astro Pi cohort, who first discovered her passion for space science and computing through the movie Interstellar.

I remember the first time I was like, ‘OK, space is cool’ is when I watched a movie. It was called Interstellar. I [realised] I might want to do something like that in my future. So, when I came to [St Joseph’s] secondary school, I saw coding as a subject and I was like, ‘Mum, I’ve got to do coding.’

Kamaya, student at St Joseph’s

Inspiring students to build community through Astro Pi

A key person encouraging St Joseph’s students to give coding a try has been Mr Murray, or Danny as he is fondly referred to by students and staff alike. Danny was introduced to the importance of engaging with computing technologies while teaching science at a school in England: he attended a Code Club where he saw kids building projects with Raspberry Pis, and he couldn’t wait to get involved. Growing his knowledge from there, Danny changed subject focus when he moved back to Ireland. He took on the challenge of helping St Joseph’s expand their computer science offering, along with leading on all IT-related issues.

A secondary school teacher.
Teacher Danny Murray has used his enthusiasm to help shape a culture of digital skills at St Joseph’s.

When the school introduced mandatory coding taster sessions for all first-year students, Danny was blown away by the students’ eagerness and wanted to provide further opportunities for them to see what they could achieve with digital technologies.

This is where Astro Pi came in. After hearing about this exciting coding challenge through an acquaintance, Danny introduced it to his computer science class, as well as extending an open invitation to all St Joseph’s students. The uptake was vast, especially once he shared that the young people could become the recipients of some very exciting photos.

You get to see photos of Earth that nobody has ever seen. Imagine just talking to somebody and saying, ‘Oh, there’s a picture of the Amazon. I took that picture when I was 14. From space.’

Danny Murray, computing teacher at St Joseph’s

Danny’s mission is to instil in his students the belief that they can achieve anything. Collaborating on Astro Pi projects has enabled young people at St Joseph’s to team up and uncover their strengths, and has helped foster a strong community.

A culture of digital skills

The students’ sense of community has transcended Danny’s classroom, creating a culture of enthusiasm for digital skills at St Joseph’s. Today, a dedicated team of students is in charge of solving tech-related challenges within the school, as Deputy Principal Darren Byrne explains:

Our own students actually go class to class, repairing tech issues. So, every day there are four or five students going around checking PCs in classrooms. They […] give classes to our first-year students on app usage.
It’s invested in the whole school [now], the idea that students can look after this kind of technology themselves. We’re the ones reaching out for help from the students!

Darren Byrne, Deputy Principal at St Joseph’s

Spark enthusiasm in your school community

To find out how you can get involved in Astro Pi, visit astro-pi.org for further information, deadlines, and more. If you would like to learn more about the other free resources we have available to help you inspire a coding community in your school, head to www.raspberrypi.org/teach

Help us celebrate St Joseph’s Secondary School by sharing their story on X (formerly Twitter), LinkedIn, and Facebook.

The post Celebrating the community: St Joseph’s Secondary School appeared first on Raspberry Pi Foundation.

AI literacy for teachers and students all over the world

I am delighted to announce that the Raspberry Pi Foundation and Google DeepMind are building a global network of educational organisations to bring AI literacy to teachers and students all over the world, starting with Canada, Kenya, and Romania.

Learners in a classroom in Kenya.
Learners around the world will gain AI literacy skills through Experience AI.

Experience AI 

We launched Experience AI in September 2022 to help teachers and students learn about AI technologies and how they are changing the world. 

Developed by the Raspberry Pi Foundation and Google DeepMind, Experience AI provides everything that teachers need to confidently deliver engaging lessons that will inspire and educate young people about AI and the role that it could play in their lives.

A group of young people investigate computer hardware together.
Experience AI is designed to inspire learners about AI through real-world contexts.

We provide lesson plans, classroom resources, worksheets, hands-on activities, and videos that introduce a wide range of AI applications and the underlying technologies that make them work. The materials are designed to be relatable to young people and can be taught by any teacher, whether or not they have a technical background. Alongside the classroom resources, we provide teacher professional development, including an online course that provides an introduction to machine learning and AI. 

Part of Experience AI are video interviews with AI developers at Google DeepMind.

The materials are grounded in real-world contexts and emphasise the potential for young people to positively change the world through a mastery of AI technologies. 

Since launching the first resources, we have seen significant demand from teachers and students all over the world, with over 200,000 students already learning with Experience AI. 

Experience AI network

Building on that initial success and in response to huge demand, we are now building a global network of educational organisations to expand the reach and impact of Experience AI by translating and localising the materials, promoting them to schools, and supporting teacher professional development.

Obum Ekeke OBE, Head of Education Partnerships at Google DeepMind, says:

“We have been blown away by the interest we have seen in Experience AI since its launch and are thrilled to be working with the Raspberry Pi Foundation and local partners to expand the reach of the programme. AI literacy is a critical skill in today’s world, but not every young person currently has access to relevant education and resources. By making AI education more inclusive, we can help young people make more informed decisions about using AI applications in their daily lives, and encourage safe and responsible use of the technology.”

Learner in a computing classroom.
Experience AI helps learners understand how they might use AI to positively change the world.

Today we are announcing the first three organisations that we are working with, each of which is already doing fantastic work to democratise digital skills in their part of the world. All three are already working in partnership with the Raspberry Pi Foundation and we are excited to be deepening and expanding our collaboration to include AI literacy.

Digital Moment, Canada

Digital Moment is a Montreal-based nonprofit focused on empowering young changemakers through digital skills. Founded in 2013, Digital Moment has a track record of supporting teachers and students across Canada to learn about computing, coding, and AI literacy, including through supporting one of the world’s largest networks of Code Clubs

Digital Moment logo.

“We’re excited to be working with the Raspberry Pi Foundation and Google DeepMind to bring Experience AI to teachers across Canada. Since 2018, Digital Moment has been introducing rich training experiences and educational resources to make sure that Canadian teachers have the support to navigate the impacts of AI in education for their students. Through this partnership, we will be able to reach more teachers and with more resources, to keep up with the incredible pace and disruption of AI.”

Indra Kubicek, President, Digital Moment

Tech Kidz Africa, Kenya

Tech Kidz Africa is a Mombasa-based social enterprise that nurtures creativity in young people across Kenya through digital skills including coding, robotics, app and web development, and creative design thinking.

Tech Kidz Africa logo.

“With the retooling of teachers as a key objective of Tech Kidz Africa, working with Google DeepMind and the Raspberry Pi Foundation will enable us to build the capacity of educators to empower the 21st century learner, enhancing the teaching and learning experience to encourage innovation and  prepare the next generation for the future of work.”

Grace Irungu, CEO, Tech Kidz Africa

Asociația Techsoup, Romania

Asociația Techsoup works with teachers and students across Romania and Moldova, training Computer Science, ICT, and primary school teachers to build their competencies around coding and technology. A longstanding partner of the Raspberry Pi Foundation, they foster a vibrant community of CoderDojos and support young people to participate in Coolest Projects and the European Astro Pi Challenge

Asociata Techsoup logo.

“We are enthusiastic about participating in this global partnership to bring high-quality AI education to all students, regardless of their background. Given the current exponential growth of AI tools and instruments in our daily lives, it is crucial to ensure that students and teachers everywhere comprehend and effectively utilise these tools to enhance their human, civic, and professional potential. Experience AI is the best available method for AI education for middle school students. We couldn’t be more thrilled to work with the Raspberry Pi Foundation and Google DeepMind to make it accessible in Romanian for teachers in Romania and the Republic of Moldova, and to assist teachers in fully integrating it into their classes.”

Elena Coman, Director of Development, Asociația Techsoup

Get involved

These are the first of what will become a global network of organisations supporting tens of thousands of teachers to equip millions of students with a foundational understanding of AI technologies through Experience AI. If you want to get involved in inspiring the next generation of AI leaders, we would love to hear from you.

The post AI literacy for teachers and students all over the world appeared first on Raspberry Pi Foundation.

Code Editor update: Support for HTML and mobile devices 

Earlier this year, we launched our Code Editor, a free online tool to help make learning text-based programming simple and accessible for kids age 9 and up. We focus on supporting the needs of young people who are learning programming at school, in Code Clubs and CoderDojos, and at home.

A young coder using the Code Editor.

Today, we have two exciting updates to share: support for web page projects with HTML/CSS, and an improved mobile and tablet experience.

What’s the Code Editor?

Learners can use the Code Editor to write and run code in a web browser without installing any additional software. The Editor is currently available as a beta version, and we’ve already received really positive comments: 

“The Editor looks really nice! I have tried the Python part, and it is intuitive and concise. My little program worked no problem, and I am sure the Editor will be easy, intuitive, and quick to learn for the young [learners].”

— Volunteer in the CoderDojo community

Introducing HTML and CCS in the Code Editor 

The Code Editor now supports the HTML and CSS web development languages, giving young people the ability to create and preview their own websites directly in the Editor interface. Learners can have their code and the preview panel side by side, and they can also preview their websites in a separate, larger tab.

A web project in the Code Editor.

We have embedded the Editor in our ‘Introduction to web‘ path on the Projects site. The path contains six HTML and CSS projects for beginners and helps them create fun websites like the ones shown here.

We want the Code Editor to be safe, age-appropriate, and suitable for use in classrooms or coding clubs. With this in mind, we have excluded certain functions, like being able to add links to external websites in the code. Rather than enabling image uploads, we provide a library of images when projects in our free learning paths contain images, in order to support multimedia projects safely.

A web project in the Code Editor.

Whether users are coding in Python or HTML/CSS, the Editor offers accessibility options so you can easily switch settings between light and dark mode, and between small, medium, and large text size. The text size feature is useful for people with visual impairments, as well as for educators who want to demonstrate something to a group of learners.

Improved experience for mobile and tablet devices

Our Code Editor now offers a new and improved experience for users of mobile and tablet devices. This improves access for learners in classrooms where tablets are used, and in low- and middle-income countries, where mobile phones are commonly used for digital learning.

A web project in the Code Editor.

The Editor now includes: 

  • A clearer and simpler navigation for small-screen devices
  • Separate Menu, Code and Output/Preview tabs
  • The same features on mobile/tablet devices as on desktop of laptop computers, such as responsive panels and the option to open HTML/CSS projects in a new tab

Try the Code Editor today

We’re continuing to develop the Code Editor and have more improvements planned. If you would like to try it out and provide us with your feedback, we’d love to hear what you think of our latest updates. 

Code Editor developments have been made possible with generous support from Endless and the Cisco Foundation.

The post Code Editor update: Support for HTML and mobile devices  appeared first on Raspberry Pi Foundation.

New micro:bit coding projects for kids

Young people can now learn to code and create with our brand-new path of micro:bit coding projects. The ‘Intro to micro:bit’ path is free and kids can follow it to code projects that focus on wellbeing, including topics like mental health, relaxation, and exercise.

As you might know, a micro:bit (pronounced “microbit”) is a small, programmable device designed for education. You can program it using any computer. It’s easy to use and learn with, and suitable for beginners, especially young people in and out of school.

The theme of the new project path: Wellbeing

Our aim for this new micro:bit project path is to help young people explore how they can create their own tech tools that help them look after themselves and others. By designing the micro:bit coding projects around wellbeing, we want to not only help kids develop programming and digital literacy skills, but also promote open conversations about the important topic of mental health.

Kids coding a microbit project.
Credit: David Bird

The six micro:bit coding projects in our new path all cover different aspects of wellbeing in a fun, creative way:

  1. Good sleep patterns
  2. Relaxation
  3. Self-confidence
  4. Happiness
  5. Health 
  6. Entertainment

We hope that following the path and making projects helps encourage learners to ask questions, share their experiences, and feel like they can ask parents, teachers, or mentors for support, and help support their friends and peers.

What is in the ‘Intro to micro:bit’ project path?

The ‘Intro to micro:bit’ path is designed according to our Digital Making Framework. Its aim is to encourage young people to become independent coders and tech creators as they progress along the projects in a path by gently removing scaffolding.

  • Our project paths begin with three Explore projects, in which learners are guided through tasks that introduce them to new coding skills.
  • Next, learners complete two Design projects. Here, they are encouraged to practise their skills and bring in their own interests to personalise their coding creations.
  • Finally, learners complete one Invent project. This is where they put everything that they have learned together and create something unique that matters to them.

The structure of the path means that learners are led through the development process of a coding project and learn how to turn their ideas into reality. The path structure also supports them with fixing programming errors (debugging), showing them that errors are a normal part of computer programming and just temporary setbacks that they can overcome.

Credit: David Bird

Because community is important for learning, the path also offers young people the chance to share the projects they make with peers around the world.

What coding skills and knowledge will young people learn?

The Explore projects at the start of the path are where the initial learning takes place. Learners then develop their new skills and knowledge by putting them into practice in the Design and Invent projects, where they add in their own ideas and creativity.

The key programming concepts covered in this path are:

  • Variables
  • Using selection (if, else if, and else)
  • Using repetition (for loops)
  • Using randomisation
  • Using functions
Kids coding a microbit project.
Credit: David Bird

There are two versions of the micro:bit (V1 and V2) and learners can use either version to create the micro:bit coding projects in the path, using the micro:bit’s input and output features:

Input features:

  • Buttons
  • Accelerometer
  • Sound sensor/microphone (micro:bit V2 only)
  • Capacitive touch sensor
  • Light sensor

Output features:

  • LED display
  • Speaker
  • Headphones connected via GPIO (micro:bit V1 only)

Explore project 1: Music player

In this Explore project, kids create a music player on the micro:bit to explore how listening to music can improve their mood. While creating their music player, young people get to choose melodies that they enjoy or that make them feel more relaxed. They also add a range of functions such as pausing, skipping, and shuffling tracks.

Explore project 2: Sound level meter

Noise levels can affect people’s well-being, so in this project, kids create a program to use the micro:bit to display how noisy their environment is. They will also learn how to save the noise data the micro:bit measures so they can identify the noisiest times in their day.

Explore project 3: Sleep tracker

Sleep is an important factor that contributes towards well-being. With this third Explore project, kids create a program to track their sleep movements using the micro:bit. This teaches them about variables and about using the micro:bit’s accelerometer, and its LEDs to display data.

Design project 1: How’s your day?

The first Design project of the path gets young people to build a mood checker program using the question ‘How’s your day?’. Kids get creative design control over the mood checker’s outputs according to the user’s replies, including displaying an animation or positive messages, or playing music. Kids can also make use of sensors to measure the various factors in the environment that could be affecting the user’s mood.

In this project, young people apply all of the coding skills and knowledge covered in the Explore projects, including selection, repetition, variables, functions, and randomisation.

Design project 2: Active assistant

In the second Design project, young people create an assistant that helps them get active.The project provides examples, a structure, and brief summaries of what kids have learned to do on the path so far to inspire and motivate them. This mean young people can work independently to produce their own outcomes and the functionality of their assistant is up to each young tech creator.

Invent project: Party game

The final project, Party game, encourages learners to independently replicate their favourite party game for entertainment and relaxation. Learners will combine all of the knowledge and skills they’ve gained throughout the path to make something of their own around the theme of well-being. This is a chance for them to unleash their creativity and reflect on real-life games they enjoy. The outcome will be unique, and fun for them to share with their friends and family.

Key questions answered

Who is this path for?

We have written these micro:bit coding projects with young people around the age of 6 to 13 in mind. Building the projects on the path does not require any previous coding experience, although complete beginners may want to try our free ‘Intro to Scratch’ path first.

What software do learners need to code these projects?

A web browser on a computer. In every project, starter code is provided in the MakeCode online code editor. Learners can either download their project code to a physical micro:bit (recommended) or use the micro:bit simulator in MakeCode.

Kids coding a microbit project.
Credit: David Bird

Young people who live where there isn’t constant internet connectivity can also download the offline version of the MakeCode editor. There are also free micro:bit coding apps for smartphones and tablets.

How long will the path take to complete?

We’ve designed the ‘Intro to micro:bit’ path to be completed in six one-hour sessions, with one hour per project. However, the project instructions invite learners to take additional time to upgrade their projects if they wish.

What can learners do next?

Take part in Coolest Projects

At the end of the micro:bit path, learners are encouraged to register a project they’re making with their new coding skills for Coolest Projects, our annual online technology showcase for young people around the world.

Taking part is free, and beginners as well as more experienced young tech creators are invited. This is their opportunity to share their ingenuity in an online gallery for the world and the Coolest Projects community to celebrate.

The post New micro:bit coding projects for kids appeared first on Raspberry Pi Foundation.

Explore space science and coding with Astro Pi Mission Space Lab

Today we’re calling all young people who are excited to explore coding and space science, and the mentors who want to support and inspire them on their journey. Astro Pi Mission Space Lab is officially open again, offering young people all over Europe the amazing chance to have their code for a science experiment run in space on the International Space Station (ISS).

Aurora Borealis as seen from the ISS.
Aurora Borealis as seen from the ISS

With this year’s Mission Space Lab, astronauts from the European Space Agency are setting young people a task: to write a computer program that runs on the ISS and calculates the speed at which the ISS is orbiting planet Earth. Participation in Mission Space Lab is completely free.

Here’s ESA astronaut candidate Rosemary Coogan to introduce this year’s mission:

The mission: Calculate the speed of the ISS

Mission Space Lab invites young people up to age 19 to work in teams of 2 to 6 and write a Python program for the Astro Pi computers on board the ISS to collect data and calculate the speed at which the ISS is travelling. 

Your role as a mentor is to support teams as they design and create their program — with our free guidance resources to help you and your young creators.

We want as many young people as possible to have the chance to take part in Mission Space Lab, so the way in which teams solve the task set by the ESA astronauts can be different depending on the experience of your team:

  • Beginner programmers can follow the guided project we provide (more info below) to write their program.
  • Teams with more programming experience can get creative to come up with their own innovative solution and calculate the speed of the ISS as accurately as possible.

The Astro Pis are two Raspberry Pi computers stationed on the ISS, each equipped with a High Quality Camera, a Sense HAT add-on board with a number of sensors, and a Coral machine learning accelerator. Each Astro Pi has a hard casing designed especially for space travel.

The Astro Pi computers inside the International Space Station.
The Astro Pi computers inside the International Space Station.

There are lots of ways to use sensor data from the Astro Pis to calculate the speed of the ISS, so young people can get creative solving their Mission Space Lab task while learning fascinating facts about physics and the inner workings of the ISS.

Two girls code together at a computer.

All Mission Space Lab participants whose programs run on the ISS will receive a certificate recognising their achievement, and they’ll get the chance to attend a Q&A webinar with an ESA astronaut. Teams also receive back data from the ISS based on their Mission Space Lab programs, for example photos or sensor measurements. That means you’ll have the option to explore and use that data in follow-on activities with your young people.

The coastline of Chile see from the ISS.
The coastline of Chile photographed by an Astro Pi on the ISS

Support for you to get started with Mission Space Lab

We are providing lots of supporting materials to help you and your team with Mission Space Lab:

  • A new Mission Space Lab mentor guide helps you assemble and support teams of young people who want to take part. It gives you as a mentor everything you need to answer your team’s questions and help them solve problems. It also includes tips on how to structure the Mission for your team. So young and your young people can make the most of Mission Space Lab, we suggest you run a series of sessions where your team can learn about the ISS, think about how they could use the different Astro Pi sensors, and design and create a program. The guide shows you how to help them use a design thinking approach during the Mission and develop problem solving and collaboration skills that are very important for careers in tech.
  • The Mission Space Lab creator guide helps young people design and create their Python programs. It contains all of the information they need to write a program that can be run on the Astro Pis. It includes discussion points for the team’s planning and design process. The technical instructions support young people to create a program that accomplishes its goal in the allocated runtime of 10 minutes.
  • We’re also providing a ISS speed project guide that shows one way for teams to complete the Mission Space Lab task: writing a program that calculates the ISS speed using photos taken by the Astro Pi’s camera. 

Mission Space Lab is open for submissions from today, 6 November 2023, until 19 February 2024.

Visit the Astro Pi website for full details and eligibility criteria: astro-pi.org/mission-space-lab

Sign up for Astro Pi news

The European Astro Pi Challenge is an ESA Education project run in collaboration with us here at the Raspberry Pi Foundation. 

You can keep up with all Astro Pi news by following the Astro Pi X account (formerly Twitter) or signing up to the newsletter at astro-pi.org.

The post Explore space science and coding with Astro Pi Mission Space Lab appeared first on Raspberry Pi Foundation.

The Experience AI Challenge: Make your own AI project

Par : Dan Fisher

We are pleased to announce a new AI-themed challenge for young people: the Experience AI Challenge invites and supports young people aged up to 18 to design and make their own AI applications. This is their chance to have a taste of getting creative with the powerful technology of machine learning. And equally exciting: every young creator will get feedback and encouragement from us at the Raspberry Pi Foundation.

As you may have heard, we recently launched a series of classroom lessons called Experience AI in partnership with Google DeepMind. The lesson materials make it easy for teachers of all subjects to teach their learners aged up to 18 about artificial intelligence and machine learning. Now the Experience AI Challenge gives young people the opportunity to develop their skills further and build their own AI applications.

Key information

  • Starts on 08 January 2024
  • Free to take part in
  • Designed for beginners, based on the tools Scratch and Machine Learning for Kids
  • Open for official submissions made by UK-based young people aged up to 18 and their mentors 
  • Young people and their mentors around the world are welcome to access the Challenge resources and make AI projects
  • Tailored resources for young people and mentors to support you to take part
  • Register your interest and we’ll send you a reminder email on the launch day

The Experience AI Challenge

For the Experience AI Challenge, you and the young people you work with will learn how to make a machine learning (ML) classifier that organises data types such as audio, text, or images into different groupings that you specify.

A girl points excitedly at a project on the Raspberry Pi Foundation's projects site.

The Challenge resources show young people the basic principles of using the tools and training ML models. Then they will use these new skills to create their own projects, and it’s a chance for their imaginations to run free. Here are some examples of projects your young tech creators could make:

  • An instrument classifier to identify the type of musical instrument being played in pieces of music
  • An animal sound identifier to determine which animal is making a particular sound
  • A voice command recogniser to detect voice commands like ‘stop’, ‘go’, ‘left’, and ‘right’
  • A photo classifier to identify what kind of food is shown in a photograph

All creators will receive expert feedback on their projects.

To make the Experience AI Challenge as familiar and accessible as possible for young people who may be new to coding, we designed it for beginners. We chose the free, easy-to-use, online tool Machine Learning for Kids for young people to train their machine learning models, and Scratch as the programming environment for creators to code their projects. If you haven’t used these tools before, don’t worry. The Challenge resources will provide all the support you need to get up to speed.

Training an ML model and creating a project with it teaches many skills beyond coding, including computational thinking, ethical programming, data literacy, and developing a broader understanding of the influence of AI on society.

The three Challenge stages

Our resources for creators and mentors walk you through the three stages of the Experience AI Challenge.

Stage 1: Explore and discover

The first stage of the Challenge is designed to ignite young people’s curiosity. Through our resources, mentors let participants explore the world of AI and ML and discover how these technologies are revolutionising industries like healthcare and entertainment.

Stage 2: Get hands-on

In the second stage, young people choose a data type and embark on a guided example project. They create a training dataset, train an ML model, and develop a Scratch application as the user interface for their model. 

Stage 3: Design and create

In the final stage, mentors support young people to apply what they’ve learned to create their own ML project that addresses a problem they’re passionate about. They submit their projects to us online and receive feedback from our expert panel.

Things to do today

  1. Visit our new Experience AI Challenge homepage to find out more details
  2. Register your interest so you receive a reminder email on launch day, 8 January
  3. Get your young people excited and thinking about what kind of AI project they might like to create

We can’t wait to see how you and your young creators choose to engage with the Experience AI Challenge!

The post The Experience AI Challenge: Make your own AI project appeared first on Raspberry Pi Foundation.

Coding futures: Celebrating our educational partnership in Telangana

On September 29 2023, amidst much excitement and enthusiasm, a significant event took place at a unique school in Moinabad, Telangana: the teams of the Raspberry Pi Foundation and Telangana Social Welfare Residential Educational Institutions Society (TSWREIS) gathered to celebrate our partnership on the esteemed Coding Academy of TSWREIS.

The welcoming ceremony at the opening event of the Coding Academy in Telangana.
A celebratory ceremony at the opening event of the Coding Academy in Telangana.

This event marked a special project for us where we are piloting a distinctive, progression-based computing curriculum in a government school and a degree college in India.

A group of female students at the Coding Academy in Telangana.

Partnering with TSWREIS to bring computing education to Telangana

At the Foundation, our goal is to work closely with schools, tailoring our offerings to their contexts. Our objective is to design and evaluate unique learning experiences by integrating content from our diverse range of high-quality educational products. Through these efforts, we aim to drive significant advancements in education and technology, benefiting both students and education systems across the world.

Two female students at the Coding Academy in Telangana.
A group of male students at the Coding Academy in Telangana.

TSWREIS manages 268 residential educational institutions in Telangana, with a primary focus on delivering quality education to under-resourced young people, particularly children from scheduled castes and tribes in rural areas. Among these institutions is the Coding Academy school, located in Moinabad, which operates as a fully residential co-ed school for grades 6 to 12, accommodating around 800 students. Additionally, TSWREIS oversees another centre of excellence, the Coding Academy degree college in Shamirpet catering to 600 undergraduate female students.

the Coding Academy in Telangana.
A computing classroom at the Coding Academy in Telangana.

We joined forces with TSWREIS to form a collaborative partnership with their Coding Academy units at both high school and college. We’re committed to sharing our expertise in computing and coding curriculum for students from Grade 6 to intermediate at the school, and across all courses at the college.

Our computing curriculum encompasses computer science, information technology, and digital literacy, and all its materials have been thoroughly researched and tested in the UK. Based on our 12 pedagogical principles, our curriculum ensures a project-based and holistic approach to learning. We also plan to provide national and international avenues for the Coding Academy students to showcase their learnings, for example through Coolest Projects, the world-leading, global technology showcase for young creators that we host every year. 

The exciting model for our partnership with TSWREIS

We took on the challenge of directly delivering a comprehensive curriculum at the Coding Academy school and college through our own educators, exclusively hired and trained for this project. This is an exciting new approach for us, because up to this point, we have never directly delivered a curriculum anywhere in the world. However, we know we have created a world-class computing curriculum for educators in formal (and non-formal) settings, and we have many years’ experience of training teachers, so we are well-prepared to face this project and its potential challenges head-on and make it a success.

A group of people from the Raspberry Pi Foundation at the Coding Academy in Telangana.

To begin the project, our team members based in India conducted a thorough study of the Coding Academy students’ interests and learning levels. Based on this, our Curriculum team in the UK and India customised and localised the content in our curriculum. We will be observing the curriculum’s delivery in classrooms and collecting students’ responses, and based on this data we’ll further refine the localised curriculum. 

Throughout the project’s lifespan, we’ll measure the effectiveness of our curriculum and the impact of learning on the students. To do this, we’ll collect data from classroom observations, periodic assessments, and focused group discussions with students and educators.

A group of male students at the Coding Academy in Telangana.

Starting from the second year of the project, we will build capacity within the system. In collaboration with TSWREIS, we’ll select teachers from within the organisation based on their interest and competence, and initiate their training. Our objective is that by the project’s fifth year, TSWREIS will have achieved self-sufficiency in delivering computing education to students at the Coding Academy as well as other institutions in its purview.

The promise of this project for our work in India

We began delivering lessons at the Coding Academy college and school in July, and it’s worth mentioning that it’s been a rollercoaster ride so far. We’ve been working closely with the TSWREIS team to equip both the academic units with the resources needed for seamless implementation of the project. Our India-based team has been able to ensure continuity in the project’s momentum and plug every gap, and is working tirelessly to make this big, challenging, and exciting project blossom and succeed. When it comes to the students’ energy, enthusiasm, and the sparkle in their eyes for their learning, it’s unmatched, and everyone feels proud of their achievements so far.

Three female students at the Coding Academy in Telangana.

This work with TSWREIS holds immense importance for us, representing our dedication to shaping a brighter educational landscape especially for young people from under-resourced communities. We hope to replicate similar initiatives across various regions in India, enabling widespread access to quality education. We also aspire to take forward our initiatives in much larger dimensions for the entirety of India. 

Students welcome Rachel Bennett at the Coding Academy in Telangana.

In addition to our partnership with TSWREIS, we are actively engaged in several other impactful projects in India, such as our partnership with Mo School Abhiyan in Odisha to serve the government’s schools across Odisha state, and our collaboration with Pratham Foundation, which is helping us reach under-resourced communities and furthering our commitment to enhancing educational experiences.

We look towards the future

In reflection, the voices at the launch event on September 29 echoed the anticipation and optimism that filled the air on that memorable day. Chief guests who graciously attended the event were Shri. E Naveen Nicholas, IAS, Secretary at TSWREIS & TTWREIS, and Rachel Bennett, our Managing Director at the Raspberry Pi Foundation. Heartfelt gratitude to them for their presence and blessings. We also extend our thanks to our funding partner in this work, Ezrah Charitable Trust, and our delivery partners for their invaluable support.

The group of people from the Raspberry Pi Foundation and TSWREIS at the Coding Academy in Telangana.

The energy felt on the event day continues to drive our determination to do the work that lies ahead. As we look forward to the future, our hope and the hope of both the Coding Academy team and students are aligned: hope for a brighter, technologically empowered future, where education becomes a beacon of opportunity for all.

The post Coding futures: Celebrating our educational partnership in Telangana appeared first on Raspberry Pi Foundation.

Welcome, new partners: Growing the global impact of Code Club and CoderDojo

Increasing access to computing education is a global challenge, and at the Raspberry Pi Foundation we take a global approach in addressing it. One way we do this is to partner with organisations around the world and support them to introduce Code Clubs and CoderDojos in their local or national communities.

Students in a Code Club run by CSEd Botswana.

Code Club and CoderDojo are the two global networks of free, volunteer-led coding clubs for young people that we support. They are a great fit for a lot of organisations that share our vision and values and work with young people from backgrounds that are currently under-represented in computing. Right now, our Global Clubs Partner network involves more than 50 organisations in over 40 different countries around the world. Seven new partners have joined us since August.

New members in the Global Clubs Partner network

We send a warm welcome to our seven new partners. Here is some of what they are working on:

  • CSEd Botswana is training 25 teachers in rural areas to run Code Clubs in their schools
  • Hacedores in Mexico is working towards establishing CoderDojos in their 80 makerspaces, and Code Clubs in the local schools of their community members.
  • Code Club Luxembourg is already running several clubs and also hosts a number of workshops each year to encourage children to carry on their coding journey by joining a Code Club or CoderDojo.
  • Light Into Europe works with the Deaf community in Romania. They plan to open up coding to children with hearing impairments through accessible Code Clubs, supported by interpreters and adults who are also deaf.
  • KIT Hub in Burundi have plans to establish CoderDojos to support children from underserved areas, including a sizable community of Congolese young people living in refugee camps in Burundi.
  • Orientations Training Centre in Sudan will be setting up clubs in Khartoum and Darfur, and they are planning a special passion for supporting young people to submit entries to the Coolest Projects online showcase in 2024.
  • Savanna Developer Network will establish CoderDojos in northern Ghana to narrow the income and infrastructure gap between the north and the south by ensuring that children in the north aren’t left behind in computing education. 

We are really excited that these organisations have chosen to join the Global Clubs Partner network.

Benefits of partnering with us

When they join our Global Clubs Partner network, organisations work with us to grow the Code Club and CoderDojo communities around the world. Our Global Clubs Partners share our mission to enable young people to realise their full potential through the power of computing and digital technologies, and they commit to working towards this mission with our support.

A CoderDojo venue in Burundi, run by KIT Hub.
A CoderDojo venue in
A CoderDojo venue in Burundi, run by KIT Hub.
Burundi, run by KIT Hub

For many partners and the educators and volunteers they work with, running Code Clubs and CoderDojos is an opportunity to learn to code alongside the young people. We give partners tailored support for their work through our free, high-quality resources, including online training, community events, and easy-to-follow coding projects.

Our new partners are as glad as we are to have joined our network.

Abdelmoneim Mohammed of Orientations Training Centre in Sudan is excited by the impact Code Club will have on his young coders, telling us:  

I expect this can help to make our citizens a global citizen, [by] learning from a well-established and developed educational system.

For Ethel Tshukudu of CSEd Botswana, it is the community focus and available support network that is important. She tells us:

The strong sense of community and the availability of mentorship opportunities are particularly appealing, as they ensure that CSEdBotswana can consistently access the support needed to enhance our coding clubs and create a more significant impact. 

Our partner from KIT Hub in Burundi, Ferdinand Alimasi, values how establishing clubs promotes collective learning and engagement in the community. He says:

Education and preparation of [the] future workforce require collective work and responsibilities, so these clubs will bring the change in communities by offering opportunities to learn for kids and teens, as well as opportunities for everyone to be involved in building a better future for all.

What we learn from our partnerships

Our partners work in lots of different circumstances all around the world. A key learning for us is that there is no ‘one size fits all’ approach to computing education. We support our partners to adapt and deliver our resources in a way that they know will best engage their learners. This highlights how important it is to work in a culturally sensitive way, and to prioritise providing opportunities for learners to use digital technology to make things that matter to them. That looks very different depending on where you are in the world, and who you are working with.

A child at a laptop in a classroom in rural Kenya.

Through working with our partners, we also see just how much world events can impact the already unequal access young people have to learning new digital skills. Climate crisis events such as floods and wildfires, and political crises such as war, conflict, and changes in government have affected many of our global partners this year. The resulting closures of schools and other educational venues, electricity blackouts, and funding challenges cause further educational disadvantage to the children in the affected areas. Our partners play a key role in providing additional educational opportunities for young people when it is safe to do so.

Three teenage girls at a laptop
Young tech creators at a Code Club in Brazil.

The experiences and perspectives we’ve gained through our partnerships with global organisations are extremely important to us and our mission. They help to inform the work we do to make computing education truly accessible for all learners and educators around the globe.  

Could your organisation become a Global Clubs Partner?

You can find out more about how your organisation could join our Global Clubs Partner network on the CoderDojo and Code Club websites, or contact us directly with your questions or ideas about a partnership.

The post Welcome, new partners: Growing the global impact of Code Club and CoderDojo appeared first on Raspberry Pi Foundation.

Hello World #22 out now: Teaching & AI

Par : Meg Wang

Recent developments in artificial intelligence are changing how the world sees computing and challenging computing educators to rethink their approach to teaching. In the brand-new issue of Hello World, out today for free, we tackle some big questions about AI and computing education. We also get practical with resources for your classroom.

Cover of Hello World issue 22.

Teaching and AI

In their articles for issue 22, educators explore a range of topics related to teaching and AI, including what is AI literacy and how do we teach it; gender bias in AI and what we can do about it; how to speak to young children about AI; and why anthropomorphism hinders learners’ understanding of AI.

Our feature articles also include a research digest on AI ethics for children, and of course hands-on examples of AI lessons for your learners.

A snapshot of AI education

Hello World issue 22 is a comprehensive snapshot of the current landscape of AI education. Ben Garside, Learning Manager for our Experience AI programme and guest editor of this issue, says:

“When I was teaching in the classroom, I used to enjoy getting to grips with new technological advances and finding ways in which I could bring them into school and excite the students I taught. Occasionally, during the busiest of times, I’d also look longingly at other subjects and be jealous that their curriculum appeared to be more static than ours (probably a huge misconception on my behalf).”

It’s inspiring for me to see how the education community is reacting to the opportunities that AI can provide.

Ben Garside

“It’s inspiring for me to see how the education community is reacting to the opportunities that AI can provide. Of course, there are elements of AI where we need to tread carefully and be very cautious in our approach, but what you’ll see in this magazine is educators who are thinking creatively in this space.”

Download Hello World issue 22 for free

AI is a topic we’ve addressed before in Hello World, and we’ll keep covering this rapidly evolving area in future. We hope this issue gives you plenty of ideas to take away and build upon.

Also in issue 22:

  • Vocational training for young people
  • Making the most of online educator training
  • News about BBC micro:bit
  • An insight into the WiPSCE 2023 conference for teachers and educators
  • And much, much more

You can download your free PDF issue now, or purchase a print copy from our store. UK-based subscribers for a free print edition can expect their copies to arrive in the mail this week.

Send us a message or tag us on social media to let us know which articles have made you think and, most importantly, which will help you with your teaching.

The post Hello World #22 out now: Teaching & AI appeared first on Raspberry Pi Foundation.

What does AI mean for computing education?

It’s been less than a year since ChatGPT catapulted generative artificial intelligence (AI) into mainstream public consciousness, reigniting the debate about the role that these powerful new technologies will play in all of our futures.

A person in front of a cloudy sky, seen through a refractive glass grid. Parts of the image are overlaid with a diagram of a neural network.
Image: Alan Warburton / © BBC / Better Images of AI / Quantified Human / CC-BY 4.0

‘Will AI save or destroy humanity?’ might seem like an extreme title for a podcast, particularly if you’ve played with these products and enjoyed some of their obvious limitations. The reality is that we are still at the foothills of what AI technology can achieve (think World Wide Web in the 1990s), and lots of credible people are predicting an astonishing pace of progress over the next few years, promising the radical transformation of almost every aspect of our lives. Comparisons with the Industrial Revolution abound.

At the same time, there are those saying it’s all moving too fast; that regulation isn’t keeping pace with innovation. One of the UK’s leading AI entrepreneurs, Mustafa Suleyman, said recently: “If you don’t start from a position of fear, you probably aren’t paying attention.”

In a computing classroom, a girl looks at a computer screen.
What is AI literacy for young people?

What does all this mean for education, and particularly for computing education? Is there any point trying to teach children about AI when it is all changing so fast? Does anyone need to learn to code anymore? Will teachers be replaced by chatbots? Is assessment as we know it broken?

If we’re going to seriously engage with these questions, we need to understand that we’re talking about three different things:

  1. AI literacy: What it is and how we teach it
  2. Rethinking computer science (and possibly some other subjects)
  3. Enhancing teaching and learning through AI-powered technologies

AI literacy: What it is and how we teach it

For young people to thrive in a world that is being transformed by AI systems, they need to understand these technologies and the role they could play in their lives.

In a computing classroom, a smiling girl raises her hand.
Our SEAME model articulates the concepts, knowledge, and skills that are essential ingredients of any AI literacy curriculum.

The first problem is defining what AI literacy actually means. What are the concepts, knowledge, and skills that it would be useful for a young person to learn?

The reality is that — with a few notable exceptions — the vast majority of AI literacy resources available today are probably doing more harm than good.

In the past couple of years there has been a huge explosion in resources that claim to help young people develop AI literacy. Our research team mapped and categorised over 500 resources, and undertook a systematic literature review to understand what research has been done on K–12 AI classroom interventions (spoiler: not much). 

The reality is that — with a few notable exceptions — the vast majority of AI literacy resources available today are probably doing more harm than good. For example, in an attempt to be accessible and fun, many materials anthropomorphise AI systems, using human terms to describe them and their functions and thereby perpetuating misconceptions about what AI systems are and how they work.

A real banana and an image of a banana shown on the screen of a laptop are both labelled "Banana".
Image: Max Gruber / Better Images of AI / Ceci n’est pas une banane / CC-BY 4.0

What emerged from this work at the Raspberry Pi Foundation is the SEAME model, which articulates the concepts, knowledge, and skills that are essential ingredients of any AI literacy curriculum. It separates out the social and ethical, application, model, and engine levels of AI systems — all of which are important — and gets specific about age-appropriate learning outcomes for each. 

This research has formed the basis of Experience AI (experience-ai.org), a suite of resources, lessons plans, videos, and interactive learning experiences created by the Raspberry Pi Foundation in partnership with Google DeepMind, which is already being used in thousands of classrooms.

If we’re serious about AI literacy for young people, we have to get serious about AI literacy for teachers.

Defining AI literacy and developing resources is part of the challenge, but that doesn’t solve the problem of how we get them into the hands and minds of every young person. This will require policy change. We need governments and education system leaders to grasp that a foundational understanding of AI technologies is essential for creating economic opportunity, ensuring that young people have the mindsets to engage positively with technological change, and avoiding a widening of the digital divide. We’ve messed this up before with digital skills. Let’s not do it again.

Two smiling adults learn about computing at desktop computers.
Teacher professional development is key to AI literacy for young people.

More than anything, we need to invest in teachers and their professional development. While there are some fantastic computing teachers with computer science qualifications, the reality is that most of the computing lessons taught anywhere on the planet are taught by a non-specialist teacher. That is even more so the case for anything related to AI. If we’re serious about AI literacy for young people, we have to get serious about AI literacy for teachers. 

Rethinking computer science 

Alongside introducing AI literacy, we also need to take a hard look at computer science. At the very least, we need to make sure that computer science curricula include machine learning models, explaining how they constitute a new paradigm for computing, and give more emphasis to the role that data will play in the future of computing. Adding anything new to an already packed computer science curriculum means tough choices about what to deprioritise to make space.

Elephants in the Serengeti.
One of our Experience AI Lessons revolves around the use of AI technology to study the Serengeti ecosystem.

And, while we’re reviewing curricula, what about biology, geography, or any of the other subjects that are just as likely to be revolutionised by big data and AI? As part of Experience AI, we are launching some of the first lessons focusing on ecosystems and AI, which we think should be at the heart of any modern biology curriculum. 

Some are saying young people don’t need to learn how to code. It’s an easy political soundbite, but it just doesn’t stand up to serious scrutiny.

There is already a lively debate about the extent to which the new generation of AI technologies will make programming as we know it obsolete. In January, the prestigious ACM journal ran an opinion piece from Matt Welsh, founder of an AI-powered programming start-up, in which he said: “I believe the conventional idea of ‘writing a program’ is headed for extinction, and indeed, for all but very specialised applications, most software, as we know it, will be replaced by AI systems that are trained rather than programmed.”

Computer science students at a desktop computer in a classroom.
Writing computer programs is an essential part of learning how to analyse problems in computational terms.

With GitHub (now part of Microsoft) claiming that their pair programming technology, Copilot, is now writing 46 percent of developers’ code, it’s perhaps not surprising that some are saying young people don’t need to learn how to code. It’s an easy political soundbite, but it just doesn’t stand up to serious scrutiny. 

Even if AI systems can improve to the point where they generate consistently reliable code, it seems to me that it is just as likely that this will increase the demand for more complex software, leading to greater demand for more programmers. There is historical precedent for this: the invention of abstract programming languages such as Python dramatically simplified the act of humans providing instructions to computers, leading to more complex software and a much greater demand for developers. 

A child codes a Spiderman project at a laptop during a Code Club session.
Learning to program will help young people understand how the world around them is being transformed by AI systems.

However these AI-powered tools develop, it will still be essential for young people to learn the fundamentals of programming and to get hands-on experience of writing code as part of any credible computer science course. Practical experience of writing computer programs is an essential part of learning how to analyse problems in computational terms; it brings the subject to life; it will help young people understand how the world around them is being transformed by AI systems; and it will ensure that they are able to shape that future, rather than it being something that is done to them.

Enhancing teaching and learning through AI-powered technologies

Technology has already transformed learning. YouTube is probably the most important educational innovation of the past 20 years, democratising both the creation and consumption of learning resources. Khan Academy, meanwhile, integrated video instruction into a learning experience that gamified formative assessment. Our own edtech platform, Ada Computer Science, combines comprehensive instructional materials, a huge bank of questions designed to help learning, and automated marking and feedback to make computer science easier to teach and learn. Brilliant though these are, none of them have even begun to harness the potential of AI systems like large language models (LLMs).

The challenge for all of us working in education is how we ensure that ethics and privacy are at the centre of the development of [AI-powered edtech].

One area where I think we’ll see huge progress is feedback. It’s well-established that good-quality feedback makes a huge difference to learning, but a teacher’s ability to provide feedback is limited by their time. No one is seriously claiming that chatbots will replace teachers, but — if we can get the quality right — LLM applications could provide every child with unlimited, on-demand feedback. AI-powered feedback — not giving students the answers, but coaching, suggesting, and encouraging in the way that great teachers already do — could be transformational.

Two adults learn about computing at desktop computers.
The challenge for all of us working in education is how we ensure that ethics and privacy are at the centre of the development of AI-powered edtech.

We are already seeing edtech companies racing to bring new products and features to market that leverage LLMs, and my prediction is that the pace of that innovation is going to increase exponentially over the coming years. The challenge for all of us working in education is how we ensure that ethics and privacy are at the centre of the development of these technologies. That’s important for all applications of AI, but especially so in education, where these systems will be unleashed directly on young people. How much data from students will an AI system need to access? Can that data — aggregated from millions of students — be used to train new models? How can we communicate transparently the limitations of the information provided back to students?

Ultimately, we need to think about how parents, teachers, and education systems (the purchasers of edtech products) will be able to make informed choices about what to put in front of students. Standards will have an important role to play here, and I think we should be exploring ideas such as an AI kitemark for edtech products that communicate whether they meet a set of standards around bias, transparency, and privacy. 

Realising potential in a brave new world

We may very well be entering an era in which AI systems dramatically enhance the creativity and productivity of humanity as a species. Whether the reality lives up to the hype or not, AI systems are undoubtedly going to be a big part of all of our futures, and we urgently need to figure out what that means for education, and what skills, knowledge, and mindsets young people need to develop in order to realise their full potential in that brave new world. 

That’s the work we’re engaged in at the Raspberry Pi Foundation, working in partnership with individuals and organisations from across industry, government, education, and civil society.

If you have ideas and want to get involved in shaping the future of computing education, we’d love to hear from you.


This article will also appear in issue 22 of Hello World magazine, which focuses on teaching and AI. We are publishing this new issue on Monday 23 October. Sign up for a free digital subscription to get the PDF straight to your inbox on the day.

The post What does AI mean for computing education? appeared first on Raspberry Pi Foundation.

Young children’s ScratchJr coding projects: Assessment and support

Block-based programming applications like Scratch and ScratchJr provide millions of children with an introduction to programming; they are a fun and accessible way for beginners to explore programming concepts and start making with code. ScratchJr, in particular, is designed specifically for children between the ages of 5 and 7, enabling them to create their own interactive stories and games. So it’s no surprise that they are popular tools for primary-level (K–5) computing teachers and learners. But how can teachers assess coding projects built in ScratchJr, where the possibilities are many and children are invited to follow their imagination?

Aim Unahalekhala
Aim Unahalekhala

In the latest seminar of our series on computing education for primary-aged children, attendees heard about two research studies that explore the use of ScratchJr in K–2 education. The speaker, Apittha (Aim) Unahalekhala, is a graduate researcher at the DevTech Research Group at Tufts University. The two studies looked at assessing young children’s ScratchJr coding projects and understanding how they create projects. Both of the studies were part of the Coding as Another Language project, which sees computer science as a new literacy for the 21st century, and is developing a literacy-based coding curriculum for K–2.

How to evaluate children’s ScratchJr projects

ScratchJr offers children 28 blocks to choose from when creating a coding project. Some of these are simple, such as blocks that determine the look of a character or setting, while others are more complex, such as messaging blocks and loops. Children can combine the blocks in many different ways to create projects of different levels of complexity.

A child select blocks for a ScratchJr project on a tablet.
Selecting blocks for a ScratchJr project

At the start of her presentation, Aim described a rubric that she and her colleagues at DevTech have developed to assess three key aspects of a ScratchJr coding project. These aspects are coding concepts, project design, and purposefulness.

  • Coding concepts in ScratchJr are sequencing, repeats, events, parallelism, coordination, and the number parameter
  • Project design includes elaboration (number of settings and characters, use of speech bubbles) and originality (character and background customisation, animated looks, sounds)

The rubric lets educators or researchers:

  • Assess learners’ ability to use their coding knowledge to create purposeful and creative ScratchJr projects
  • Identify the level of mastery of each of the three key aspects demonstrated within the project
  • Identify where learners might need more guidance and support
The elements covered by the ScratchJr project evaluation rubric.
The elements covered by the ScratchJr project evaluation rubric. Click to enlarge.

As part of the study, Aim and her colleagues collected coding projects from two schools at the start, middle, and end of a curriculum unit. They used the rubric to evaluate the coding projects and found that project scores increased over the course of the unit.

They also found that, overall, the scores for the project design elements were higher than those for coding concepts: many learners enjoyed spending lots of time designing their characters and settings, but made less use of other features. However, the two scores were correlated, meaning that learners who devoted a lot of time to the design of their project also got higher scores on coding concepts.

The rubric is a useful tool for any teachers using ScratchJr with their students. If you want to try it in your classroom, the validated rubric is free to download from the DevTech research group’s website.

How do young children create a project?

The rubric assesses the output created by a learner using ScratchJr. But learning is a process, not just an end outcome, and the final project might not always be an accurate reflection of a child’s understanding.

By understanding more about how young children create coding projects, we can improve teaching and curriculum design for early childhood computing education.

In the second study Aim presented, she set out to explore this question. She conducted a qualitative observation of children as they created coding projects at different stages of a curriculum unit, and used Google Analytics data to conduct a quantitative analysis of the steps the children took.

A Scratch project creation process involving iteration.
A project creation process involving iteration

Her findings highlighted the importance of encouraging young learners to explore the full variety of blocks available, both by guiding them in how to find and use different blocks, and by giving them the time and tools they need to explore on their own.

She also found that different teaching strategies are needed at different stages of the curriculum unit to support learners. This helps them to develop their understanding of both basic and advanced blocks, and to explore, customise, and iterate their projects.

Early-unit strategy:

  • Encourage free play to self-discover different functions, especially basic blocks

Mid-unit strategy:

  • Set plans on how long children will need on customising vs coding
  • More guidance on the advanced blocks, then let children explore

End-of-unit strategy:

  • Provide multiple sessions to work
  • Promote iteration by encouraging children to keep improving code and adding details
Teaching strategies for different stages of a ScratchJr curriculum.
Teaching strategies for different stages of the curriculum

You can watch Aim’s full presentation here:

You can also access the seminar slides here.

Join our next seminar on primary computing education

At our next seminar, we welcome Aman Yadav (Michigan State University), who will present research on computational thinking in primary school. The session will take place online on Tuesday 7 November at 17:00 UK time. Don’t miss out and sign up now:

To find out more about connecting research to practice for primary computing education, you can find the rest of our upcoming monthly seminars on primary (K–5) teaching and learning and watch the recordings of previous seminars in this series.

The post Young children’s ScratchJr coding projects: Assessment and support appeared first on Raspberry Pi Foundation.

Take part in the UK Bebras Challenge 2023 for schools

Par : Dan Fisher

The UK Bebras Challenge is back and ready to accept entries from schools for its annual event, which runs from 6 to 17 November.

UK Bebras 2023 logo.

More than 3 million students from 59 countries took part in the Bebras Computational Thinking Challenge in 2022. In the UK alone, over 365,000 students participated. Read on to find out how you can get your school involved.

“This is now an annual event for our Year 5 and 6 students, and one of the things I actually love about it is the results are not always what you might predict. There are children who have a clear aptitude for these puzzles who find this is their opportunity to shine!”

Claire Rawlinson, Primary Teacher, Lancashire

What is the Bebras Challenge?

Bebras is a free, annual challenge that helps schools introduce computational thinking to their students. No programming is involved, and it’s completely free for schools to enter. All Bebras questions are self-marking.

We’re making Bebras accessible by offering age-appropriate challenges for different school levels and a challenge tailored for visually impaired students. Schools can enter students from age 6 to 18 and know they’ll get interesting and challenging (but not too challenging) activities. 

Students aged 10 to 18 who do particularly well will get invited to the Oxford University Computing Challenge (OUCC).

A group of young people posing for a photo.
The winners of the Oxford University Computing Challenge 2023, with Professor Peter Millican at the OUCC Prize Day in the Raspberry Pi Foundation office.

What is the thinking behind Bebras?

We want young people to get excited about computing. Through Bebras, they will learn about computational and logical thinking by answering questions and solving problems.

Bebras questions are based on classic computing problems and are presented in a friendly, age-appropriate way. For example, an algorithm-based puzzle for learners aged 6 to 8 is presented in terms of a hungry tortoise finding an efficient eating path across a lawn; for 16- to 18-year-olds, a difficult problem based on graph theory asks students to sort out quiz teams by linking quizzers who know each other.

“This has been a really positive experience. Thank you. Shared results with Head and Head of Key Stage 3. Really useful for me when assessing Key Stage 4 options.”

– Secondary teacher, North Yorkshire

Can you solve our example Bebras puzzle?

Here’s a Bebras question for the Castors category (ages 8 to 10) from 2021. You will find the answer at the end of this blog. 

Cleaning

A robot picks up litter.

A simple drawing showing a robot and litter.
  1. The robot moves to the closest piece of litter and picks it up.
  2. It then moves to the next closest piece of litter and picks it up.
  3. It carries on in this way until all the litter has been picked up.

Question: Which kind of litter will the robot pick up last?

Four simple drawings: an apple, a cup, a can, and crumpled paper.

How do I get my school involved in Bebras?

The Bebras challenge for UK schools takes place from 6 to 17 November. Register at bebras.uk/admin to get free access to the challenge.

By registering, you also get access to the Bebras back catalogue of questions, from which you can build your own quizzes to use in your school at any time during the year. All the quizzes are self-marking, and you can download your students’ results for your mark book. Schools have reported using these questions for end-of-term activities, lesson starters, and schemes of lessons about computational thinking.


Puzzle answer

The answer to the example puzzle is:

A simple drawing of a cup.

The image below shows the route the robot takes by following the instructions:

A simple drawing showing the route a robot walks to pick up litter.

The post Take part in the UK Bebras Challenge 2023 for schools appeared first on Raspberry Pi Foundation.

Launch kids’ code into space with the European Astro Pi Challenge 2023/24

Throughout this year, space agencies have been embarking on new missions to explore our solar system, and young people can get involved too through the European Astro Pi Challenge 2023/24, which we’re launching today.

Logo of the European Astro Pi Challenge.

Kids’ code in space with the Astro Pi Challenge

In the past few months India’s Chandrayaan-3 mission landed near the Moon’s south pole, NASA’s Parker Solar Probe flew by Venus on its way to the sun, and the SpaceX Crew-7 launched to the International Space Station (ISS), led by ESA astronaut Andreas Mogensen. We’re especially excited about Andreas’ mission because he’s the astronaut who will help to run young people’s Astro Pi programs on board the ISS this year.

ESA astronaut Andreas Mogensen on board the ISS.
ESA astronaut Andreas Mogensen will help run kids’ Astro Pi code on board the ISS. Can you spot an Astro Pi computer in the photo?

As you may know, the European Astro Pi Challenge gives young people the amazing opportunity to conduct scientific experiments in space by writing computer programs for the Astro Pis, special Raspberry Pi computers on board the ISS.

Two Astro Pis on board the International Space Station.
Two Astro Pis on board the International Space Station.

The Astro Pi Challenge is free and offers two missions for young people: Mission Zero is an inspiring activity for introducing kids to text-based programming with Python. Mission Space Lab gives teams of young people the chance to take on a more challenging programming task and stretch their coding and science skills.

A young person with her coding project at a laptop.

Participation in Astro Pi is open to young people up to age 19 in ESA Member States (see the Astro Pi website for eligibility details).

Astro Pi Mission Zero opens today

In Astro Pi Mission Zero, young people write a simple Python program to take a reading using a sensor on one of the ISS Astro Pi computers and display a personalised pixel art image for the astronauts on board the ISS. They can take part by themselves or as coding teams.

Logo of Mission Zero, part of the European Astro Pi Challenge.

The theme for Mission Zero 2023/24 is ‘fauna and flora’: young people are invited to program pixel art images or animations of animals, plants, or fungi to display on the Astro Pi computers’ LED pixel screen and remind the astronauts aboard the ISS of Earth’s natural wonders.

A collection of 8 by 8 pixel images of animals.
A selection of Mission Zero pixel art images of animals.

By following the guide we provide, kids can complete the Mission Zero coding activity in around one hour, for example during a school lesson or coding club session. No coding experience is needed to take part. Kids can write their code in any web browser on any computer connected to the internet, without special equipment or software.

A map of Earth.
Mission Zero participants get a certificate showing the exact time and place where their code was run in space.

All young people that meet the eligibility criteria and follow the official Mission Zero guidelines will have their program run in space for up to 30 seconds. They will receive a unique and personalised certificate to show their coding achievement. The certificate will display the exact start and end time of their program’s run, and where the ISS was above Earth in this time period.

Mission Zero 2023/24 opens today and is open until Monday 25 March 2024. It’s very easy to support young people to get involved — find out more on the Astro Pi website:

Astro Pi Mission Space Lab will open soon

In this year’s Astro Pi Mission Space Lab, ESA astronauts are inviting teams of young people to solve a scientific task by writing a Python program.

Astro Pi Mission Space Lab logo.

The Mission Space Lab task is to gather data with the Astro Pi computers to calculate the speed at which the ISS is travelling. This new format of the mission will allow many more young people to run their programs in space and get a taste of space science.

The Strait of Gibraltar photographed by an Astro Pi on board the ISS.
The Strait of Gibraltar photographed by an Astro Pi on board the ISS during a previous Mission Space Lab.

Mission Space Lab will open on 6 November. We will share more information about how young people and mentors can participate very soon.

Sign up for Astro Pi news

The European Astro Pi Challenge is an ESA Education project run in collaboration with us here at the Raspberry Pi Foundation.

You can keep up with all Astro Pi news by following the Astro Pi X account (formerly Twitter) or signing up to the newsletter at astro-pi.org.

The post Launch kids’ code into space with the European Astro Pi Challenge 2023/24 appeared first on Raspberry Pi Foundation.

Celebrating young tech creators in person: Coolest Projects events 2023

In the 2023 Coolest Projects online showcase, 5801 young people from all over the world shared the wonderful, fun, and creative things they had made with technology. But that’s not all we’ve seen of Coolest Projects this year. As well as our worldwide annual online showcase, a number of in-person Coolest Projects events are taking place in countries across the globe in 2023.

The exhibition hall at Coolest Projects Ireland 2023.
The exhibition hall at Coolest Projects Ireland 2023.

Run by us or partner organisations, these exciting events create a space for young people to meet other young tech creators, connect to their community, and celebrate each others’ creations. In-person Coolest Projects events around the world had to pause over the coronavirus pandemic, and we’re delighted to see them return to engage and inspire young people once again.

Coolest Projects Ireland in Dublin

On 1 July, we were super excited to host Coolest Projects Ireland, our first in-person Coolest Projects event since 2020. 63 young tech creators from Northern Ireland and the Republic of Ireland came together in Dublin for an exciting one-day event where they shared 43 incredible creations, with engineer and STEM communicator Dr Niamh Shaw leading everyone through the day’s celebrations.

Young tech creators with projects in the Scratch category on stage at Coolest Projects Ireland.
The creators with projects in the Scratch category on stage with Dr Niamh Shaw.

One young maker showcasing her project was Charlotte from Kinsale CoderDojo in the Republic of Ireland. Her creative storytelling project ‘Goldicat and the Three Angry Property Owners’ was chosen as a judges’ favourite in the Scratch category.

Charlotte’s story includes different games and three secret endings for the user to discover. She told us: “I know someone who made an animation based off the fairy tale Hansel and Gretel in Scratch. This inspired me to make a game based off a different fairy tale, Goldilocks and the Three Bears.”

Charlotte’s project ‘Goldicat and the Three Angry Property Owners’.

Harshit entered the Hardware category with his amazing mini vending machine. Describing his project, he explained, “This is a recreation of a vending machine, but I have added my own twists to it to make it simple to build. You still get the full experience of an actual vending machine, but what makes it special is that it is made fully out of recycled materials.”

A young tech creator with a hardware project at Coolest Projects Ireland.
Harshit with his mini vending machine project.

Young people at Coolest Projects Ireland were joined and supported by family, friends, and mentors from Code Clubs and CoderDojos. Mentors told us their favourite things about attending a Coolest Projects event in person were “the joy and excitement the participants got from taking part and discussing their project with the judges”, and “the way it was very inclusive to all children and all [were] included on stage for some swag!”

Coolest Projects events by partners around the world

In 2023 we’re partnering with six organisations that are bringing Coolest Projects events for their communities. We’re still looking forward to the exciting Coolest Projects events planned for the rest of the year:

Back in June, more than 30 young creators participated in Coolest Projects Hungary, which was organised in Budapest by the team at EPAM Systems Inc. And April saw our partner CoderDojo Belgium organise Coolest Projects Belgium for 40 young people, who shared 25 projects across different categories from Scratch to Hardware and Advanced Programming.

A young tech creator with a laptop at Coolest Projects Belgium.
A young tech creator at Coolest Projects Belgium.
A young tech creator with a laptop at Coolest Projects Belgium.
A young tech creator at Coolest Projects Belgium.

The CoderDojo Belgium team shared how important the Coolest Projects event is to their community:

“Just like every year, we’ve unlocked the doors to welcome the next generation of tech enthusiasts. And this year, once again, we were absolutely amazed by the projects they brought to the spotlight. From an app predicting stock market evolution, to creatively designed games with unexpected twists, not to mention the incredible robots, and more, their ingenuity knows no bounds.”

CoderDojo Belgium

How you can get involved in Coolest Projects

We’re excited that the Coolest Projects online showcase — open to any young creator anywhere in the world — will return in 2024. And if there isn’t a Coolest Projects in-person event in your country yet, don’t worry. We’re working with more and more partners every year to bring Coolest Projects events to more young people.

To stay up to date with news about the Coolest Projects online showcase, sign up to the newsletter.

Young people and an adult mentor at a computer at Coolest Projects Ireland 2023.

And you can celebrate young tech creators with us year round wherever you are by following Coolest Projects on XInstagram, LinkedIn, or Facebook, where we share inspiring projects from the Coolest Projects online gallery and photos from the in-person events.

We’d like to thank EPAM Systems Inc, Meta, and GoTo for supporting the Coolest Projects Ireland event. If you’re interested in partnering with us for Coolest Projects, please reach out to us via email.

The post Celebrating young tech creators in person: Coolest Projects events 2023 appeared first on Raspberry Pi Foundation.

Experience AI: Teach about AI, chatbots, and biology

New artificial intelligence (AI) tools have had a profound impact on many areas of our lives in the past twelve months, including on education. Teachers and schools have been exploring how AI tools can transform their work, and how they can teach their learners about this rapidly developing technology. As enabling all schools and teachers to help their learners understand computing and digital technologies is part of our mission, we’ve been working hard to support educators with high-quality, free teaching resources about AI through Experience AI, our learning programme in partnership with Google DeepMind.

""

In this article, we take you through the updates we’ve made to the Experience AI Lessons based on teachers’ feedback, reveal two new lessons on large language models (LLMs) and biology, and give you the chance to shape the future of the Experience AI programme. 

Updated lessons based on your feedback

In April we launched the first Experience AI Lessons as a unit of six lessons for secondary school students (ages 11 to 14, Key Stage 3) that gives you everything you need to teach AI, including lesson plans, slide decks, worksheets, and videos. Since the launch, we’ve worked closely with teachers and learners to make improvements to the lesson materials.

The first big update you’ll see now is an additional project for students to do across Lesson 5 and Lesson 6. Before, students could choose between two projects to create their own machine learning model, either to classify data from the world’s oceans or to identify fake news. The new project we’ve added gives students the chance to use images to train a machine learning model to identify whether or not an item is biodegradable and therefore suitable to be put in a food waste bin.

Two teenagers sit at laptops and do coding activities.

Our second big update is a new set of teacher-focused videos that summarise each lesson and highlight possible talking points. We hope these videos will help you feel confident and ready to deliver the Experience AI Lessons to your learners.

A new lesson on large language models

As well as updating the six existing lessons, we’ve just released a new seventh lesson consisting of a set of activities to help students learn about the capabilities, opportunities, and downsides of LLMs, the models that AI chatbots are based on.

With the LLM lesson’s activities you can help your learners to:

  • Explore the purpose and functionality of LLMs and examine the critical aspect of trustworthiness of these models’ outputs
  • Examine the reasons why the output of LLMs may not always be reliable and understand that LLMs are machines that make predictions
  • Compare LLMs to other technologies to assess their suitability for different purposes
  • Evaluate the appropriateness of using LLMs in a variety of authentic scenarios
A slide from an Experience AI Lesson about large language models.
An example activity in our new LLM unit.

All Experience AI Lessons are designed to be cross-curricular, and for England-based teachers, the LLM lesson is particularly useful for teaching PSHE (Personal, Social, Health and Economic education).

The LLM lesson is designed as a set of five 10-minute activities, so you have the flexibility to teach the material as a single lesson or over a number of sessions. While we recommend that you teach the activities in the order they come, you can easily adapt them for your learners’ interests and needs. Feel free to take longer than our recommended time and have fun with them.

A new lesson on biology: AI for the Serengeti

We have also been working on an exciting new lesson to introduce AI to secondary school students (ages 11 to 14, Key Stage 3) in the biology classroom. This stand-alone lesson focuses on how AI can help conservationists with monitoring an ecosystem in the Serengeti.

Elephants in the Serengeti.

We worked alongside members of the Biology Education Research Group (BERG) at the UK’s Royal Society of Biology to make sure the lesson is relevant and accessible for Key Stage 3 teachers and their learners.

Register your interest if you would like to be one of the first teachers to try out this thought-provoking lesson.  

Webinars to support your teaching

If you want to use the Experience AI materials but would like more support, our new webinar series will help you. You will get your questions answered by the people who created the lessons. Our first webinar covered the six-lesson unit and you can watch the recording now:

September’s webinar: How to use Machine Learning for Kids

Join us to learn how to use Machine Learning for Kids (ML4K), a child-friendly tool for training AI models that is used for project work throughout the Experience AI Lessons. The September webinar will be with Dale Lane, who has spent his career developing AI technology and is the creator of ML4K.

Help shape the future of AI education

We need your feedback like a machine learning model needs data. Here are two ways you can share your thoughts:

  1. Fill in our form to tell us how you’ve used the Experience AI materials.
  2. Become part of our teacher feedback panel. We meet every half term, and our first session will be held mid-October. Email us to register your interest and we’ll be in touch.

To find out more about how you can use Experience AI to teach AI and machine learning to your learners this school year, visit the Experience AI website.

The post Experience AI: Teach about AI, chatbots, and biology appeared first on Raspberry Pi Foundation.

Make a robot: A fun and educational journey into robotics for kids

Par : Marc Scott

Lots of kids are excited about robotics, and we have the free resources you need to help your children start making robots.

A smiling girl holding a robot buggy in her lap

What’s a robot anyway?

Did you know that the concept of robotics dates back to ancient Greece, where a mathematician built a self-propelled flying pigeon to understand bird flight? Today, we have robots assisting people in everything from manufacturing to medicine. But what exactly is a robot? Ask two people, and you might get two different answers. Some may tell you about Star Wars’ C3PO and R2D2, while others may tell you about self-driving cars or even toys.

In my view, a robot is a machine that can carry out a series of physical tasks, programmed via a computer. These tasks could range from picking up an object and placing it elsewhere, to navigating a maze, to even assembling a car without human interaction.

Why robotics?

My first encounter with robotics was the Big Trak, a programmable toy vehicle created in 1979. You could program up to 16 commands into Big Trak, which it then executed in sequence. My family and I used the toy to transport items to each other around our house. It was a fun and engaging way to explore the basics of robotics and programming.

A Big Trak toy robot on wheels with a keypad on top and with a cart attached.

Understanding something about robotics is not just for scientists and engineers. It involves learning a range of skills that empower your kids to be creators of our digital world, instead of just consumers.

A child codes at a desktop computer.

Robotics combines various aspects of science, technology, engineering, and mathematics (STEM) in a fun and engaging way. It also encourages young people’s problem-solving abilities, creativity, and critical thinking — skills that are key for the innovators of tomorrow.

Machine learning and robotics: A powerful duo

What happens when we add machine learning to robotics? Machine learning is an area of artificial intelligence where people design computer systems so they “learn” from data. This is not unlike how people learn from experience. Machine learning can enable robots to adapt to new situations and perform tasks that only people used to do.

A girl shows off a robot she has built.

We’ve already built robots that can play chess with you, or clean your house, or deliver your food. As people develop machine learning for robotics further, the possibilities are vast. By the time our children start their careers, it might be normal to have robots as software-driven “coworkers”. It’s important that we prepare children for the possible future that robotics and machine learning could open up. We need to empower them to contribute to creating robots with capabilities that complement and benefit all people.

To see what free resources we’re offering to help young people understand and create with machine learning and AI, check out this blog post about our Experience AI learning programme.

Getting started with robotics

So, how can kids start diving into the world of robotics? Here are three online resources to kickstart their journey:

Physical computing with Scratch and the Raspberry Pi

Physical computing with Scratch and the Raspberry Pi‘ is a fantastic introduction to using electronics with the block-based Scratch programming language for young learners.

A girl with a Raspberry Pi computer.

Kids will learn to create interactive stories, games, and animations, all while getting a taste of physical computing. They’ll explore how to use sound and light, and even learn how to create improvised buttons.

Introduction to Raspberry Pi Pico and MicroPython

This project path introduces the Raspberry Pi Pico, a tiny yet powerful digital device that kids can program using the text-based MicroPython language.

Blink on Raspberry Pi Pico.
A Raspberry Pi Pico.

It’s a great way to delve deeper into the world of electronics and programming. The path includes a variety of fun and engaging projects that incorporate crafting and allow children to see the tangible results of their coding efforts.

Build a robot

‘Build a robot’ is a project path that allows young people to create a simple programmable buggy. They can then make it remote-controlled and even transform it so it can follow a line by itself.

A robot buggy with a Raspberry Pi.

This hands-on project path not only teaches the basics of robotics but also encourages problem-solving as kids iteratively improve their robot buggy’s design.

The robot building community

Let’s take a moment to celebrate two young tech creators who love building robots.
Selin is a digital maker from Istanbul, Turkey, who is passionate about robotics and AI. Selin’s journey into the world of digital making began with a wish: after her family’s beloved dog Korsan passed away, she wanted to bring him back to life. This led her to design a robotic dog on paper, and to learn coding and digital making to build that robot.

Selin is posing on one knee, next to her robot.

Selin has since built seven different robotics projects. One of them is IC4U, a robotic guide dog designed to help people with impaired sight. Selin’s commitment to making projects that help make the world a better place was recognised when she was awarded the Aspiring Teen Award by Women in Tech.

Jay, a young digital maker from Preston, UK, started experimenting with code at a young age to make his own games. He attended free local coding groups, such as CoderDojo, and was introduced to the block-based programming language Scratch. Soon, Jay was combining his interests in programming with robotics to make his own inventions.

Young coder Jay shows off some of his robotics projects.

Jay’s dad, Biren, comments: “With robotics and coding, what Jay has learned is to think outside of the box and without any limits. This has helped him achieve amazing things.”

Open up the world of making robots for your child

Robotics and machine learning are not just science fiction — they shape our lives today in ways kids might not even realise. Whether your child is just interested in playing with robots, wants to learn more about them, or is considering a career in robotics, our free resources are a great place to start.

If a Greek mathematician was able to build a flying pigeon millennia ago, imagine what children could create today!

The post Make a robot: A fun and educational journey into robotics for kids appeared first on Raspberry Pi Foundation.

Get ready for Moonhack 2023: Bringing space down to Earth

Moonhack is a free global, online coding challenge by our partner Code Club Australia, powered by Telstra Foundation. It runs once a year for young learners worldwide. In 2022, almost 44,000 young people from 63 countries registered to take part.

A young person coding during a Moonhack event.

This year, Moonhack will happen from 10 to 26 October, to coincide with World Space Week 2023. The challenge is open to all young learners, wherever they are in the world, and features six brand-new projects that focus on space and innovation. We caught up with Kaye North, Community and Engagement Manager at Code Club Australia, to find out more.

What’s new for 2023?

Moonhack 2023 offers access to engaging new projects for Scratch, micro:bit, and Python. For the first time ever, young people will also have the option to follow a project brief to code their own solution to a space-based issue, using a programming language of their choice.

Two children code on laptops while an adult supports them.

In keeping with this year’s theme — which was inspired by the World Space Week 2023 theme of ‘Space and Entrepreneurship’ — the new Moonhack projects showcase inventions that were created for space exploration but are now used in everyday life, such as mobile phone cameras and LEDs.

Kaye shared that in Australia, inventions created for space travel and exploration are part of the science curriculum at primary school level. She hopes that this year’s Moonhack will help more young people understand how space exploration and coding are connected to their daily lives.

What will young people gain from taking part in Moonhack?

Moonhack features six unique coding projects, giving young people of all ages and experience levels the opportunity to engage and learn. The project brief introduced this year encourages participants to be creative, coding a solution on any platform they choose.

Young learners coding in a computing classroom.

Coders who respond to the project brief will also be in with a chance of having their project selected to be developed into an official Code Club Australia project, for other young people and educators around the world to enjoy.

Kaye emphasised that Moonhack is about more than just taking part in a global event; it also helps young people to better understand the real-world opportunities that coding can offer.

“The more kids we expose this to, the better, expanding coding past just coding and having purpose behind it. And I do try to link things in so that we’re connecting with real-world context, careers…”

Kaye North

How your young coders can get involved

Registration for Moonhack 2023 is open now. The challenge runs from 10 to 26 October, and projects can be submitted until 30 November. Participation is free and open to any young coder, whether they are part of a Code Club or not. The 2023 projects are already available in English, Arabic, Croatian, Dutch, Filipino, French, Greek, Hindi, Indonesian, Mandarin, Portuguese, and Spanish, and will be available in more languages soon. 

To find out more and register to take part, visit the Moonhack website.

Code Club Australia is powered by Telstra Foundation as part of a strategic partnership with us at the Raspberry Pi Foundation.

The post Get ready for Moonhack 2023: Bringing space down to Earth appeared first on Raspberry Pi Foundation.

Digital making with Raspberry Pis in primary schools in Sarawak, Malaysia

Dr Sue Sentance, Director of our Raspberry Pi Computing Education Research Centre at the University of Cambridge, shares what she learned on a recent visit in Malaysia to understand more about the approach taken to computing education in the state of Sarawak.

Dr Sue Sentance

Computing education is a challenge around the world, and it is fascinating to see how different countries and education systems approach it. I recently had the opportunity to attend an event organised by the government of Sarawak, Malaysia, to see first-hand what learners and teachers are achieving thanks to the state’s recent policies.

Raspberry Pis and training for Sarawak’s primary schools

In Sarawak, the largest state of Malaysia, the local Ministry of Education, Innovation and Talent Development is funding an ambitious project through which all of Sarawak’s primary schools are receiving sets of Raspberry Pis. Learners use these as desktop computers and to develop computer science skills and knowledge, including the skills to create digital making projects.

The state of Sarawak, Malaysia circled on a map.
Sarawak is the largest state of Malaysia, situated on the island of Borneo

Crucially, the ministry is combining this hardware distribution initiative with a three-year programme of professional development for primary school teachers. They receive training known as the Raspberry Pi Training Programme, which starts with Scratch programming and incorporates elements of physical computing with the Raspberry Pis and sensors.

To date the project has provided 9436 kits (including Raspberry Pi computer, case, monitor, mouse, and keyboard) to schools, and training for over 1200 teachers.

The STEM Trailblazers event

In order to showcase what has been achieved through the project so far, students and teachers were invited to use their schools’ Raspberry Pis to create projects to prototype solutions to real problems faced by their communities, and to showcase these projects at a special STEM Trailblazers event.

Sue Sentance with a group of participants showcasing their project at the STEM Trailblazers event.
Sue Sentance with teachers showcasing their projects at the STEM Trailblazers event.

Geographically, Sarawak is Malaysia’s largest state, but it has a much smaller population than the west of the country. This means that towns and villages are very spread out and teachers and students had large distances to travel to attend the STEM Trailblazers event. To partially address this, the event was held in two locations simultaneously, Kuching and Miri, and talks were live-streamed between both venues.

STEM Trailblazers featured a host of talks from people involved in the initiative. I was very honoured to be invited as a guest speaker, representing both the University of Cambridge and the Raspberry Pi Foundation as the Director of the Raspberry Pi Computing Education Research Centre.

Solving real-world problems

The Raspberry Pi projects at STEM Trailblazers were entered into a competition, with prizes for students and teachers. Most projects had been created using Scratch to control the Raspberry Pi as well as a range of sensors.

The children and teachers who participated came from both rural and urban areas, and it was clear that the issues they had chosen to address were genuine problems in their communities.

Many of the projects I saw related to issues that schools faced around heat and hydration: a Smart Bottle project reminded children to drink regularly, a shade creator project created shade when the temperature got too high, a teachers’ project told students that they could no longer play outside when the temperature exceeded 35 degrees, and a water cooling system project set off sprinklers when the temperature rose. Other themes of the projects were keeping toilets clean, reminding children to eat healthily, and helping children to learn the alphabet. One project that especially intrigued me was an alert system for large and troublesome birds that were a problem for rural schools.

Participants showcasing their project at the STEM Trailblazers event.

The creativity and quality of the projects on show was impressive given that all the students (and many of their teachers) had learned to program very recently, and also had to be quite innovative where they hadn’t been able to access all the hardware they needed to build their creations.

What we can learn from this initiative

Everyone involved in this project in Sarawak — including teachers, government representatives, university academics, and industry partners — is really committed to giving children the best opportunities to grow up with an understanding of digital technology. They know this is essential for their professional futures, and also fosters their creativity, independence, and problem-solving skills.

Young people showcasing their project at the STEM Trailblazers event.

Over the last ten years, I’ve been fortunate enough to travel widely in my capacity as a computing education researcher, and I’ve seen first-hand a number of the approaches countries are taking to help their young people gain the skills and understanding of computing technologies that they need for their futures.

It’s good for us to look beyond our own context to understand how countries across the world are preparing their young people to engage with digital technology. No matter how many similarities there are between two places, we can all learn from each other’s initiatives and ideas. In 2021 the Brookings Institution published a global review of how countries are progressing with this endeavour. Organisations such as UNESCO and WEF regularly publish reports that emphasise the importance for countries to develop their citizens’ digital skills, and also advanced technological skills. 

Young people showcasing their project at the STEM Trailblazers event.

The Sarawak government’s initiative is grounded in the use of Raspberry Pis as desktop computers for schools, which run offline where schools have no access to the internet. That teachers are also trained to use the Raspberry Pis to support learners to develop hands-on digital making skills is a really important aspect of the project.

Our commercial subsidiary Raspberry Pi Limited works with a company network of Approved Resellers around the globe; in this case the Malaysian reseller Cytron has been an enormous support in supplying Sarawak’s primary schools with Raspberry Pis and other hardware.

Schools anywhere in the world can also access the Raspberry Pi Foundation’s free learning and teaching resources, such as curriculum materials, online training courses for teachers, and our magazine for educators, Hello World. We are very proud to support the work being done in Sarawak.

As for what the future holds for Sarawak’s computing education, at the opening ceremony of the STEM Trailblazers event, the Deputy Minister announced that the event will be an annual occasion. That means every year more students and teachers will be able to come together, share their learning, and get excited about using digital making to solve the problems that matter to them.

The post Digital making with Raspberry Pis in primary schools in Sarawak, Malaysia appeared first on Raspberry Pi Foundation.

The four elements of our focus on impact

Par : Ben Durbin

The mission of the Raspberry Pi Foundation is to enable young people to realise their full potential through the power of computing and digital technologies. That’s what we say in our 2025 strategy. But how can we be sure we’re succeeding?

Learners at a CoderDojo coding club.
Participants at a CoderDojo in England.

In our strategy we also identify one of our values as being ‘focussed on impact’. This means that we are committed to learning from the best available evidence, and to being rigorous and transparent about the difference we’re making.

Children in a Code Club in India.
Participants at a Code Club in India.

Like all our values, our focus on impact infuses all of our work, and it is led by a dedicated impact team. This blog outlines four ways in which we put this value into practice in pursuit of our mission.

1. Do the right things

It doesn’t matter how fast you run, if you’re heading in the wrong direction, you’ll never get to your destination. We use data to prioritise our resources where we can make the biggest difference for young people.

For example, we use national statistics from the UK to assess how many of the Code Clubs and CoderDojos we support in the UK run in places where they can reach young people facing educational disadvantage, so that we can adopt an evidence-based approach to better serving these young people.

A child at a laptop in a classroom in rural Kenya.
Learners in a classroom in Kenya.

And we know many of the young people who face the greatest barriers to accessing computing education and developing new skills and confidence live in countries with low- and middle-income economies. That’s why we are building new partnerships in India, Kenya, and South Africa and adapting our resources and programmes for the contexts of educators and learners living there.

2. Measure what matters

We’re really excited that we’ll soon be publishing an updated Theory of Change, which captures how we make an impact. This will be the foundation for Monitoring and Evaluation (M&E) plans for all of our initiatives, where we specify their goals and set down what kinds of data we will collect to make sure we have the measure of whether the initiatives are succeeding.

A learner and a faciliator in a classroom learning digital skills.
A learner and facilitator in a classroom in Kakuma refugee camp.

Strong M&E is equally important for our established programmes and our new pilot initiatives. Code Club, the worldwide network of free, after-school coding clubs for 9- to 13-year-olds we support, has been growing for more than 10 years. Durham University’s Evidence Centre for Education is currently conducting an independent evaluation of UK-based Code Clubs to help us understand how to better support Code Club volunteers and learners around the world. We ourselves recently evaluated the pilot of a new programme we designed in partnership with Amala Education to deliver a vocational skills course for displaced learners aged 16 to 25 in Kakuma refugee camp in Kenya.

3. Keep getting better

Data is only useful if it’s translated into insights that are acted upon. We use the findings from evaluations to inform the design and continual improvement of all our initiatives.

Teachers in Code Club training in Odisha, India.
Teachers in Code Club training in India.

For example, the evaluation of our pilot vocational skills training in Kakuma refugee camp provided insights that have helped us adapt the programme for a second cohort of young people. The same was true of the M&E insights we gained from our partnership with Mo Schools in Odisha, India, where we have provided training and support to 1075 teachers to establish Code Clubs. Informed by survey data and informal feedback each step of the way, we are now gradually scaling up our support towards launching a more intensive computing and coding programme in 2000 schools in Odisha this year.

Young learners at computers in a classroom.
Learners in a UK primary school classroom.

Side by side with our M&E results, we also rely on the latest computing education research, conducted at the Foundation, in the Raspberry Pi Computing Education Research Centre at the University of Cambridge, and by academic researchers around the world. Our groundbreaking research programme on gender balance in computing, and our ongoing research on culturally relevant pedagogy, are shaping the way we work to enable all young people to achieve their full potential in computing.

4. Tell people about it

We are proud of the difference we are making. We want everyone to hear about it and feel inspired to get involved in our vital mission for young people. Our annual reviews are packed full of statistics and overviews of the difference we’re making, and we’re creating a growing video series of unique stories from people in the community we support. Watch this space for news about our updated Theory of Change, our next annual review, and more blogs about our impact.

A learner and a volunteer at a CoderDojo coding club.
A participant and a volunteer at a CoderDojo in England.

By doing these four things well, we can be confident that we are enabling young people to achieve their potential through the power of computing and digital technologies.

If you share our passion for impact and think our mission is important, why not get involved today? You can:

The post The four elements of our focus on impact appeared first on Raspberry Pi Foundation.

Young people’s amazing experiments in space: Astro Pi Mission Space Lab 2022/23

Celebrate another year of young people’s computer programs in space with us: today we and our collaborators at the European Space Agency can finally announce the winning and highly commended teams in this year’s Astro Pi Mission Space Lab.

Astro Pi Mission Space Lab logo.

Mission Space Lab: Young people’s experiments in space

In Mission Space Lab, teams of young people work together to create computer programs for scientific experiments to be carried out on the International Space Station. The programs they design and create run on the two Astro Pi computers: space-adapted Raspberry Pis with cameras and a range of sensors. 

Two Astro Pis on board the International Space Station.
The two Astro Pi computers on board the ISS

Teams’ programs were deployed on the ISS during May and ran for up to 3 hours, collecting data for their experiments. Once we’d sent the teams their data, they started analysing it in order to write their Phase 4 reports. To identify patterns and phenomena they were interested in, many teams chose to compare their data with other sources.

The Astro Pi computers inside the International Space Station.
The Astro Pis in the WORF window of the ISS

We were especially excited to see the results from the experiments this year, particularly given that the upgraded Astro Pi units with their High Quality Cameras were positioned in a new observation window (WORF) on the ISS. This allowed teams to capture high-resolution images with a much wider field of view.

Photo taken by a Mission Space Lab experiment from the International Space Station of the Earth surface.
A volcano erupting in Guatemala, captured on the ISS by a team’s Mission Space Lab experiment

What have Mission Space Lab teams investigated this year?

We feel very privileged to see the culmination of the team’s experiments in their final reports. So let’s share a few highlights from this year’s experiments:

Team Aretusa from Sicily explored the effects of climate change by cross-referencing the images they captured with the Astro Pis with historical images from Google Earth. They used Near Infrared photography to capture images, and NDVI (Normalised Difference Vegetation Index) image processing in their analysis. Below you can see that they have compared data of Saudi Arabia from 1987 to 2023, showing increasing levels of vegetation grown in attempts to restore degraded land.

Images taken from space of plant cover in Saudi Arabia.

Team Barrande from the Czech Republic trained AI models on images they gathered to identify topographical features of Earth. Their Mission Space Lab program used the Astro Pi computer’s machine learning dongle to train one AI model in real time. Later, the team also used the collected images to train another model back on Earth. Comparing the outputs of the two models, the team could tell how well the models had identified different topographical features. The below selection shows an image the team’s experiment captured on the left, the same image after processing by the AI model trained on the Astro Pi computer in the middle, and the image processed by the AI model trained on Earth.

Three images showing how two image classifier machine learning models perform in comparison.

Team DAHspace from Portugal measured the intensity of the Earth’s magnetic field along the orbit path of the ISS. Using the magnetometer on the Astro Pi, their experiment recorded data allowing the team to track changes of intensity. The team mapped this data to the ISS’s coordinates, showing the difference in the Earth’s magnetic field between the North Pole (points 1 and 2 on the chart below) and the South Pole (points 3 and 4).

Magnetic field data plotted against latitude.

And the winning teams are…

We and our collaborators at ESA Education have been busy reviewing all of the reports to assess the scientific merit, use of the Astro Pi hardware, experiment design, and data analysis. The ten winning teams come from schools and coding clubs in 11 countries. We are sending each team some cool space swag to recognise their achievement. 

Winning teams

TeamExperiment themeBased atCountry
Magnet47Life on EarthO’Neill CVICanada
AretusaLife on EarthLiceo Da Vinci FloridiaItaly
ASaetherLife on Earth“Andrei Saguna” National CollegeRomania
BarrandeLife on EarthGymnázium Joachima Barranda BerounCzech Republic
EscapersLife in spaceCode Club Canada
FuturaLife in spaceScuola Svizzera MilanoItaly
StMarksLife on EarthSt Mark’s Church of England SchoolUnited Kingdom
DAHspaceLife on EarthEB 2,3 D. Afonso HenriquesPortugal
T5CloudsLife on EarthDominican CollegeIreland
PiNutsLife in spaceTEKNISK GYMNASIUM, SkanderborgDenmark

You can click on a team name to read the team’s experiment report. 

Highly commended teams

Along with the winning teams, we would like to commend the following teams for their experiments:

TeamExperiment themeBased atCountry
ParsecLife on EarthLiceo Da Vinci Pascoli GallarateItaly
CelesteLife on EarthInternational School of FlorenceItaly
LionTechLife on EarthColegiul Național ”Mihai Eminescu”Romania
OHSpaceLife in SpaceOxford High SchoolUnited Kingdom
MagnetoLife on EarthThe American School of The HagueNetherlands
GreenEyeLife on EarthROBOTONIOGreece
PrimusLife on EarthIndependent coding clubGermany

You can click on a team name to read the team’s experiment report. 

All of the teams whose Mission Space Lab programs ran on the ISS will receive a certificate signed by ESA astronaut Samantha Cristoforetti. The winning and highly commended teams will also be invited to a live video chat with an ESA astronaut in the autumn.

Samantha Cristoforetti aboard the ISS
Samantha Cristoforetti in gives a thumbs up wearing a space suit.
Samantha Cristoforetti on board the ISS during her Minerva mission and after returning from space. Credit: ESA/NASA

Congratulations to all 2022/23 participants

Huge congratulations to every team that participated in Astro Pi Mission Space Lab. We hope you found it fun and inspiring to take part. 

A big thank you to everyone who has been involved in the European Astro Pi Challenge this year. An amazing 24,850 young people from 29 countries had their programs run in space this year. We can’t wait to do it all again starting in September.

And it’s not just us saying thanks and well done — here’s a special message from ESA astronaut Matthias Maurer:

Looking forward to the next Astro Pi Challenge

On 18 September 2023, we’ll launch the European Astro Pi Challenge for 2023/24. Mission Zero will open in September, and we’ll announce exciting news about Mission Space Lab in September too.

Logo of the European Astro Pi Challenge.

If you know a young person who might be interested in the Astro Pi Challenge, sign up for the newsletter on astro-pi.org and follow the Astro Pi Twitter account for all the latest announcements about how you can support them to take the unique opportunity to write code to run in space.

The post Young people’s amazing experiments in space: Astro Pi Mission Space Lab 2022/23 appeared first on Raspberry Pi Foundation.

Our Code Editor is open source

A couple of months ago we announced that you can test the online text-based Code Editor we’re building to help young people aged 7 and older learn to write code. Now we’ve made the code for the Editor open source so people can repurpose and contribute to it.

The interface of the beta version of the Raspberry Pi Foundation's Code Editor.

How can you use the Code Editor?

You and your learners can try out the Code Editor in our Python project paths. We’ve included a feedback form for you to let us know what you think about the Editor.

  • The Editor lets you run code straight in the browser, with no setup required.
  • It makes getting started with text-based coding easier thanks to its simple and intuitive interface.
  • If you’re logged into your Raspberry Pi Foundation account, your code in the Editor is automatically saved.
  • If you’re not logged in, your code changes persist for the session, so you can refresh or close the tab without losing your work.
  • You can download your code to your computer too.

Since the Editor lets learners save their code using their Raspberry Pi Foundation account, it’s easy for them to build on projects they’ve started in the classroom or at home, or bring a project they’ve started at home to their coding club.

Three learners working at laptops.

Python is the first programming language our Code Editor supports because it’s popular in schools, CoderDojos, and Code Clubs, as well as in industry. We’ll soon be adding support for web development languages (HTML/CSS).

A text output in the beta version of the Raspberry Pi Foundation's Code Editor.

Putting ease of use and accessibility front and centre

We know that starting out with new programming tools can be tricky and add to the cognitive load of learning new subject matter itself. That’s why our Editor has a simple and accessible user interface and design:

  • You can easily find key functions, such as how to write and run code, how to save or download your code, and how to check your code.
  • You can switch between dark and light mode.
  • You can enlarge or reduce the text size in input and output, which is especially useful for people with visual impairments and for educators and volunteers who want to demonstrate something to a group of learners.

We’ll expand the Editor’s functionalities as we go. For example, at the moment we’re looking at how to improve the Editor’s user interface (UI) for better mobile support.

If there’s a feature you think would help the Editor become more accessible and more suitable for young learners, or make it better for your classroom or club, please let us know via the feedback form.

The open-source code for the Code Editor

Our vision is that every young person develops the knowledge, skills, and confidence to use digital technologies effectively, and to be able to critically evaluate these technologies and confidently engage with technological change. We’re part of a global community that shares that vision, so we’ve made the Editor available as an open-source project. That means other projects and organisations focussed on helping people learn about coding and digital technologies can benefit from the work.

How did we build the Editor? An overview

To support the widest possible range of learners, we’ve designed the Code Editor application to work well on constrained devices and low-bandwidth connections. Safeguarding, accessibility, and data privacy are also key considerations when we build digital products at the Foundation. That’s why we decided to design the front end of the Editor to work in a standalone capacity, with Python executed through Skulpt, an entirely in-browser implementation of Python, and code changes persisted in local storage by default. Learners have the option of using a Raspberry Pi Foundation account to save their work, with changes then persisted via calls to a back end application programming interface (API).

Two young people working together on a tech project.
Two teenagers sit at laptops and do coding activities.

As safeguarding is always at the core of what we do, we only make features available that comply with our safeguarding policies as well as the ICO’s age-appropriate design code. We considered supporting functionality such as image uploads and code sharing, but at the time of writing have decided to not add these features given that, without proper moderation, they present risks to safeguarding.

There’s an amazing community developing a wealth of open-source libraries. We chose to build our text-editor interface using CodeMirror, which has out-of-the-box mobile and tablet support and includes various useful features such as syntax highlighting and keyboard shortcuts. This has enabled us to focus on building the best experience for learners, rather than reinventing the wheel.

Diving a bit more into the technical details:

  • The UI front end is built in React and deployed using Cloudflare Pages
  • The API back end is built in Ruby on Rails
  • The text-editor panel uses CodeMirror, which has best-in-class accessibility through mobile device and screen-reader support, and includes functionality such as syntax highlighting, keyboard shortcuts, and autocompletion
  • Python functionality is built using Skulpt to enable in-browser execution of code, with custom extensions built to support our learning content
  • Project code is persisted through calls to our back end API using a mix of REST and GraphQL endpoints
  • Data is stored in PostgreSQL, which is hosted on Heroku along with our back end API

Accessing the open-source code

You can find out more about our Editor’s code for both the UI front end and API back end in our GitHub readme and contributions documentation. These kick-starter docs will help you get up and running faster:

The Editor’s front end is licensed as permissively as possible under the Apache Licence 2.0, and we’ve chosen to license the back end under the copyleft AGPL V3 licence. Copyleft licences mean derived works must be licensed under the same terms, including making any derived projects also available to the community.

We’d greatly appreciate your support with developing the Editor further, which you can give by:

  • Providing feedback on our code or raising a bug as a GitHub Issue in the relevant repository.
  • Submitting contributions by raising a pull request against the relevant repository.
    • On the back end repository we’ll ask you to allow the Raspberry Pi Foundation to reserve the right to re-use your contribution.
    • You’ll retain the copyright for any contributions on either repository.
  • Sharing feedback on using the Editor itself through the feedback form.

Our work to develop and publish the Code Editor as an open-source project has been funded by Endless. We thank them for their generous support.

If you are interested in partnering with us to fund this key work, or you are part of an organisation that would like to make use of the Code Editor, please reach out to us via email.

The post Our Code Editor is open source appeared first on Raspberry Pi Foundation.

Apply for a free UK teacher’s place at the WiPSCE conference

From 27 to 29 September 2023, we and the University of Cambridge are hosting the WiPSCE International Workshop on Primary and Secondary Computing Education Research for educators and researchers. This year, this annual conference will take place at Robinson College in Cambridge. We’re inviting all UK-based teachers of computing subjects to apply for one of five ‘all expenses paid’ places at this well-regarded annual event.

Educators and researchers mingle at a conference.

You could attend WiPSCE with all expenses paid

WiPSCE is where teachers and researchers discuss research that’s relevant to teaching and learning in primary and secondary computing education, to teacher training, and to related topics. You can find more information about the conference, including the preliminary programme, at wipsce.org

Educators and researchers listen to a talk at a conference.
Educators and researchers mingle at a conference.

As a teacher at the conference, you will:

  • Engage with high-quality international research in the field where you teach
  • Learn ways to use that research to develop your own classroom practice
  • Find out how to become an advocate in your professional community for research-informed approaches to the teaching of computing.

We are delighted to welcome Google as a sponsor of WiPSCE. Google believes that every student deserves the opportunity to access the benefits of a computing education to help shape their future. However, many students aren’t getting the education they need, and teachers don’t have sufficient resources to provide it. Google recognises the responsibility they have to support organisations, universities, and schools with deep expertise and a commitment to computing education, especially within communities that have been historically underserved.

With support from Google, we will offer free places to five UK computing teachers, covering:

  • The registration fee
  • Two nights’ accommodation at Robinson College
  • Up to £500 supply costs paid to your school to cover your teaching
  • Up to £100 travel costs

To apply, you just need to fill in a short form. The application deadline is Wednesday 19 July.

The application details

To be eligible to apply:

  1. You need to be a currently practising, UK-based teacher of Computing (England), Computing Science (Scotland), ICT or Digital Technologies (N. Ireland), or Computer Science (Wales)
  2. Your headteacher needs to be able to provide written confirmation that they are happy for you to attend WiPSCE
  3. You need to be available to attend the whole conference from Wednesday lunchtime to Friday afternoon
  4. You need to be willing to share what you learn from the conference with your colleagues at school and with your broader teaching community, including through writing an article about your experience and its relevance to your teaching for this blog or Hello World magazine

The application form will ask your for:

  • Your name and contact details
  • Demographic and school information
  • Your teaching experience
  • A statement of up to 500 words on why you’re applying and how you think your teaching practice, your school and your colleagues will benefit from your attendance at WiPSCE (500 words is the maximum, feel free to be concise)

After the 19 July deadline, we’re aiming to inform you of the outcome of your application on Friday 21 July. 

Information materials at a conference.
Participants at the Clubs Conference.

Your application will be reviewed by the 2023 WiPSCE Chairs:

Sue and Mareen will:

  • Use the information you share in your form, particularly in your statement
  • Select applicants from a mix of primary and secondary schools, with a mix of years of computing teaching experience, and from a mix of geographic areas

Join us in strengthening research-informed computing classroom practice

We’d be delighted to receive your application. Being able to facilitate teachers’ attendance at the conference is very much aligned with our approach to research. Both at the Foundation and the Raspberry Pi Computing Education Research Centre, we’re committed to conducting research that’s directly relevant to schools and teachers, and to working in close collaboration with teachers.

We hope you are interested in attending WiPSCE and becoming an advocate for research-informed computing education practice. If your application is unsuccessful, we hope you consider coming along anyway. We’re looking forward to meeting you there. In the meantime, you can keep up with WiPSCE news on Twitter.

The post Apply for a free UK teacher’s place at the WiPSCE conference appeared first on Raspberry Pi Foundation.

Running a workshop with teachers to create culturally relevant Computing lessons

Who chooses to study Computing? In England, data from GCSE and A level Computer Science entries in 2019 shows that the answer is complex. Black Caribbean students were one of the most underrepresented groups in the subject, while pupils from other ethnic backgrounds, such as White British, Chinese, and Asian Indian, were well-represented. This picture is reflected in the STEM workforce in England, where Black people are also underrepresented.

Two young girls, one of them with a hijab, do a Scratch coding activity together at a desktop computer.

That’s why one of our areas of academic research aims to support Computing teachers to use culturally relevant pedagogy to design and deliver equitable learning experiences that enable all learners to enjoy and succeed in Computing and Computer Science at school. Our previous research projects within this area have involved developing guidelines for culturally relevant and responsive teaching, and exploring how a small group of primary and secondary Computing teachers used these guidelines in their teaching.

A tree symbolising culturally relevant pedagogy,with the roots labeled 'curriculum, the trunk labeled 'teaching approaches', and the crown labeled 'learning materials'.
Learning materials, teaching approaches, and the curriculum as a whole are three areas where culturally relevance is important.

In our latest research study, funded by Cognizant, we worked with 13 primary school teachers in England on adapting computing lessons to incorporate culturally relevant and responsive principles and practices. Here’s an insight into the workshop we ran with them, and what the teachers and we have taken away from it.

Adapting lesson materials based on culturally relevant pedagogy

In the group of 13 England-based primary school Computing teachers we worked with for this study:

  • One third were specialist primary Computing teachers, and the other two thirds were class teachers who taught a range of subjects
  • Some acted as Computing subject lead or coordinator at their school
  • Most had taught Computing for between three and five years 
  • The majority worked in urban areas of England, at schools with culturally diverse catchment areas 

In November 2022, we held a one-day workshop with the teachers to introduce culturally relevant pedagogy and explore how to adapt two six-week units of computing resources.

An example of a collaborative activity from a teacher-focused workshop around culturally relevant pedagogy.
An example of a collaborative activity from the workshop

The first part of the workshop was a collaborative, discussion-based professional development session exploring what culturally relevant pedagogy is. This type of pedagogy uses equitable teaching practices to:

  • Draw on the breadth of learners’ experiences and cultural knowledge
  • Facilitate projects that have personal meaning for learners
  • Develop learners’ critical consciousness

The rest of the workshop day was spent putting this learning into practice while planning how to adapt two units of computing lessons to make them culturally relevant for the teachers’ particular settings. We used a design-based approach for this part of the workshop, meaning researchers and teachers worked collaboratively as equal stakeholders to decide on plans for how to alter the units.

We worked in four groups, each with three or four teachers and one or two researchers, focusing on one of two units of work from The Computing Curriculum for teaching digital skills: a unit on photo editing for Year 4 (ages 8–9), and a unit about vector graphics for Year 5 (ages 9–10).

Descriptions of a classroom unit of teaching materials about photo editing for Year 4 (ages 8–9), and a unit about vector graphics for Year 5 (ages 9–10).
We based the workshop around two Computing Curriculum units that cover digital literacy skills.

In order to plan how the resources in these units of work could be made culturally relevant for the participating teachers’ contexts, the groups used a checklist of ten areas of opportunity. This checklist is a result of one of our previous research projects on culturally relevant pedagogy. Each group used the list to identify a variety of ways in which the units’ learning objectives, activities, learning materials, and slides could be adapted. Teachers noted down their ideas and then discussed them with their group to jointly agree a plan for adapting the unit.

By the end of the day, the groups had designed four really creative plans for:

  • A Year 4 unit on photo editing that included creating an animal to represent cultural identity
  • A Year 4 unit on photo editing that included creating a collage all about yourself 
  • A Year 5 unit on vector graphics that guided learners to create their own metaverse and then add it to the class multiverse
  • A Year 5 unit on vector graphics that contextualised the digital skills by using them in online activities and in video games

Outcomes from the workshop

Before and after the workshop, we asked the teachers to fill in a survey about themselves, their experiences of creating computing resources, and their views about culturally relevant resources. We then compared the two sets of data to see whether anything had changed over the course of the workshop.

A teacher attending a training workshop laughs as she works through an activity.
The workshop was a positive experience for the teachers.

After teachers had attended the workshop, they reported a statistically significant increase in their confidence levels to adapt resources to be culturally relevant for both themselves and others. 

Teachers explained that the workshop had increased their understanding of culturally relevant pedagogy and of how it could impact on learners. For example, one teacher said:

“The workshop has developed my understanding of how culturally adapted resources can support pupil progress and engagement. It has also highlighted how contextual appropriateness of resources can help children to access resources.” – Participating teacher

Some teachers also highlighted how important it had been to talk to teachers from other schools during the workshop, and how they could put their new knowledge into practice in the classroom:

“The dedicated time and value added from peer discourse helped make this authentic and not just token activities to check a box.” – Participating teacher

“I can’t wait to take some of the work back and apply it to other areas and subjects I teach.” – Participating teacher

What you can expect to see next from this project

After our research team made the adaptations to the units set out in the four plans made during the workshop, the adapted units were delivered by the teachers to more than 500 Year 4 and 5 pupils. We visited some of the teachers’ schools to see the units being taught, and we have interviewed all the teachers about their experience of delivering the adapted materials. This observational and interview data, together with additional survey responses, will be analysed by us, and we’ll share the results over the coming months.

A computing classroom filled with learners
As part of the project, we observed teachers delivering the adapted units to their learners.

In our next blog post about this work, we will delve into the fascinating realm of parental attitudes to culturally relevant computing, and we’ll explore how embracing diversity in the digital landscape is shaping the future for both children and their families. 

We’ve also written about this professional development activity in more detail in a paper to be published at the UKICER conference in September, and we’ll share the paper once it’s available.

Finally, we are grateful to Cognizant for funding this academic research, and to our cohort of primary computing teachers for their enthusiasm, energy, and creativity, and their commitment to this project.

The post Running a workshop with teachers to create culturally relevant Computing lessons appeared first on Raspberry Pi Foundation.

❌