Lateo.net - Flux RSS en pagaille (pour en ajouter : @ moi)

🔒
❌ À propos de FreshRSS
Il y a de nouveaux articles disponibles, cliquez pour rafraîchir la page.
À partir d’avant-hierRaspberry Pi

Get ready for Mission Space Lab with our new simulation tool

Since November, registration is open for Mission Space Lab, part of the European Astro Pi Challenge 2023/24. The Astro Pi Challenge is an ESA Education project run in collaboration with us here at the Raspberry Pi Foundation that gives young people up to age 19 the amazing opportunity to write computer programs that run on board the International Space Station (ISS). It is free to take part and young people can participate in two missions: Mission Zero, designed for beginners, and Mission Space Lab, designed for more experienced coders.

Two young people working together on a tech project.

This year, Mission Space Lab has a brand-new format. As well as introducing a new activity for teams to work on, we have created new resources to support teams and mentors, and developed a special tool to help teams test their programs. 

A young person writes Python code.

A big motivator for these changes was to make the activity more accessible and enable more young people to have their code run in space. Listening to feedback from participants and mentors, we are creating the opportunity for even more teams to submit programs that run on the ISS this year, by offering a specific activity and providing more extensive support materials.

A scientific task

For this year’s mission, ESA astronauts have given teams a specific scientific task to solve: to calculate the speed that the ISS is travelling as it orbits the Earth. People working in science often investigate a specific phenomenon or try to solve a particular problem. They have to use their knowledge and skills and the available tools to find ways to answer their research question. For Mission Space Lab, teams will work just like this. They will look at what sensors are available on the Astro Pi computers on board the ISS, develop a solution, and then write a Python program to execute it. To test their program, they will use the new Astro Pi Replay software tool we’ve created, which simulates running their program on board the ISS.

The two Astro Pi computers.
The Astro Pi computers 

To help teams and mentors take part in Mission Space Lab, we are providing a variety of supporting materials:

  • Our mentor guide has everything mentors need to support their teams through Mission Space Lab, including guidance for structuring the mission and tips to help teams solve problems.
  • Our creator guide helps young people design and create their programs. It provides information and technical instructions to help young people develop their coding skills and create a program that can be run on the Astro Pis on board the ISS.
  • We have created an ISS speed project guide that shows an example of how the scientific task can be solved using photos captured by the Astro Pi’s camera.

We have also run virtual sessions to help mentors and teams familiarise themselves with the new Mission Space Lab activity, and to ask any technical questions they might have. You can watch the recordings of these sessions on YouTube: 

The Astro Pi Replay tool

Astro Pi Replay is a new simulation tool that we have developed to support Mission Space Lab teams to test their programs. The tool simulates running programs on the Astro Pi computers on board the ISS. It is a Python library available as a plug-in to install in the Thonny IDE where teams write their programs. Thanks to this tool, teams can develop and test their programs on any computer that supports Python, without the need for hardware like the Astro Pi units on board the ISS.

The Astro Pi Replay tool works by replaying a data set captured by a Mission Space Lab team in May 2023. The data set includes readings from the Astro Pi ‘s sensors, and images taken by its visible-light camera like the ones below. Whenever teams run their programs in Thonny with Astro Pi Replay, the tool replays some of this historical data. That means teams can use the historical data to test their programs and calculations.

A photo the Mediterranean sea with the coastline of Sicily and Tunisia
The Mediterranean sea with the coastlines of Sicily and Tunisia
A photo the Irish Sea with the coastlines of the UK and Ireland
The Irish Sea with the coastlines of Great Britain and Ireland
A photo the Coastline of Southern Egypt and the Red Sea
The coastline of southern Egypt and the Red Sea

One of the benefits of using this simulation tool is that it gives teams a taste of what they can expect if their program is run on the ISS. By replaying a sequence of data captured by the Astro Pis in space, teams using sensors will be able to see what kind of data can be collected, and teams using the camera will be able to see some incredible Earth observation images.

If you’re curious about how Astro Pi Replay works, you’ll be pleased to hear we are making it open source soon. That means you’ll be able to look at the source code and find out exactly what the library does and how.

Get involved

Community members have consistently reported how amazing it is for teams to receive unique Earth observation photos and sensor data from the Astro Pis, and how great the images and data are to inspire young people to participate in their computing classes, clubs, or events. Through the changes we’ve made to Mission Space Lab this year, we want to support as many young people as possible to have the opportunity to engage in space science and capture their own data from the ISS. 

If you want a taste of how fantastic Astro Pi is for learners, watch the story of St Joseph’s, a rural Irish school where participating in Astro Pi has inspired the whole community.

Submissions for Mission Space Lab 2023/24 are open until 19 February 2024, so there’s still time to take part! You can find full details and eligibility criteria at astro-pi.org/mission-space-lab.

If you have any questions about the European Astro Pi Challenge, please get in touch at contact@astro-pi.org.

The post Get ready for Mission Space Lab with our new simulation tool appeared first on Raspberry Pi Foundation.

Explore space science and coding with Astro Pi Mission Space Lab

Today we’re calling all young people who are excited to explore coding and space science, and the mentors who want to support and inspire them on their journey. Astro Pi Mission Space Lab is officially open again, offering young people all over Europe the amazing chance to have their code for a science experiment run in space on the International Space Station (ISS).

Aurora Borealis as seen from the ISS.
Aurora Borealis as seen from the ISS

With this year’s Mission Space Lab, astronauts from the European Space Agency are setting young people a task: to write a computer program that runs on the ISS and calculates the speed at which the ISS is orbiting planet Earth. Participation in Mission Space Lab is completely free.

Here’s ESA astronaut candidate Rosemary Coogan to introduce this year’s mission:

The mission: Calculate the speed of the ISS

Mission Space Lab invites young people up to age 19 to work in teams of 2 to 6 and write a Python program for the Astro Pi computers on board the ISS to collect data and calculate the speed at which the ISS is travelling. 

Your role as a mentor is to support teams as they design and create their program — with our free guidance resources to help you and your young creators.

We want as many young people as possible to have the chance to take part in Mission Space Lab, so the way in which teams solve the task set by the ESA astronauts can be different depending on the experience of your team:

  • Beginner programmers can follow the guided project we provide (more info below) to write their program.
  • Teams with more programming experience can get creative to come up with their own innovative solution and calculate the speed of the ISS as accurately as possible.

The Astro Pis are two Raspberry Pi computers stationed on the ISS, each equipped with a High Quality Camera, a Sense HAT add-on board with a number of sensors, and a Coral machine learning accelerator. Each Astro Pi has a hard casing designed especially for space travel.

The Astro Pi computers inside the International Space Station.
The Astro Pi computers inside the International Space Station.

There are lots of ways to use sensor data from the Astro Pis to calculate the speed of the ISS, so young people can get creative solving their Mission Space Lab task while learning fascinating facts about physics and the inner workings of the ISS.

Two girls code together at a computer.

All Mission Space Lab participants whose programs run on the ISS will receive a certificate recognising their achievement, and they’ll get the chance to attend a Q&A webinar with an ESA astronaut. Teams also receive back data from the ISS based on their Mission Space Lab programs, for example photos or sensor measurements. That means you’ll have the option to explore and use that data in follow-on activities with your young people.

The coastline of Chile see from the ISS.
The coastline of Chile photographed by an Astro Pi on the ISS

Support for you to get started with Mission Space Lab

We are providing lots of supporting materials to help you and your team with Mission Space Lab:

  • A new Mission Space Lab mentor guide helps you assemble and support teams of young people who want to take part. It gives you as a mentor everything you need to answer your team’s questions and help them solve problems. It also includes tips on how to structure the Mission for your team. So young and your young people can make the most of Mission Space Lab, we suggest you run a series of sessions where your team can learn about the ISS, think about how they could use the different Astro Pi sensors, and design and create a program. The guide shows you how to help them use a design thinking approach during the Mission and develop problem solving and collaboration skills that are very important for careers in tech.
  • The Mission Space Lab creator guide helps young people design and create their Python programs. It contains all of the information they need to write a program that can be run on the Astro Pis. It includes discussion points for the team’s planning and design process. The technical instructions support young people to create a program that accomplishes its goal in the allocated runtime of 10 minutes.
  • We’re also providing a ISS speed project guide that shows one way for teams to complete the Mission Space Lab task: writing a program that calculates the ISS speed using photos taken by the Astro Pi’s camera. 

Mission Space Lab is open for submissions from today, 6 November 2023, until 19 February 2024.

Visit the Astro Pi website for full details and eligibility criteria: astro-pi.org/mission-space-lab

Sign up for Astro Pi news

The European Astro Pi Challenge is an ESA Education project run in collaboration with us here at the Raspberry Pi Foundation. 

You can keep up with all Astro Pi news by following the Astro Pi X account (formerly Twitter) or signing up to the newsletter at astro-pi.org.

The post Explore space science and coding with Astro Pi Mission Space Lab appeared first on Raspberry Pi Foundation.

Young people’s amazing experiments in space: Astro Pi Mission Space Lab 2022/23

Celebrate another year of young people’s computer programs in space with us: today we and our collaborators at the European Space Agency can finally announce the winning and highly commended teams in this year’s Astro Pi Mission Space Lab.

Astro Pi Mission Space Lab logo.

Mission Space Lab: Young people’s experiments in space

In Mission Space Lab, teams of young people work together to create computer programs for scientific experiments to be carried out on the International Space Station. The programs they design and create run on the two Astro Pi computers: space-adapted Raspberry Pis with cameras and a range of sensors. 

Two Astro Pis on board the International Space Station.
The two Astro Pi computers on board the ISS

Teams’ programs were deployed on the ISS during May and ran for up to 3 hours, collecting data for their experiments. Once we’d sent the teams their data, they started analysing it in order to write their Phase 4 reports. To identify patterns and phenomena they were interested in, many teams chose to compare their data with other sources.

The Astro Pi computers inside the International Space Station.
The Astro Pis in the WORF window of the ISS

We were especially excited to see the results from the experiments this year, particularly given that the upgraded Astro Pi units with their High Quality Cameras were positioned in a new observation window (WORF) on the ISS. This allowed teams to capture high-resolution images with a much wider field of view.

Photo taken by a Mission Space Lab experiment from the International Space Station of the Earth surface.
A volcano erupting in Guatemala, captured on the ISS by a team’s Mission Space Lab experiment

What have Mission Space Lab teams investigated this year?

We feel very privileged to see the culmination of the team’s experiments in their final reports. So let’s share a few highlights from this year’s experiments:

Team Aretusa from Sicily explored the effects of climate change by cross-referencing the images they captured with the Astro Pis with historical images from Google Earth. They used Near Infrared photography to capture images, and NDVI (Normalised Difference Vegetation Index) image processing in their analysis. Below you can see that they have compared data of Saudi Arabia from 1987 to 2023, showing increasing levels of vegetation grown in attempts to restore degraded land.

Images taken from space of plant cover in Saudi Arabia.

Team Barrande from the Czech Republic trained AI models on images they gathered to identify topographical features of Earth. Their Mission Space Lab program used the Astro Pi computer’s machine learning dongle to train one AI model in real time. Later, the team also used the collected images to train another model back on Earth. Comparing the outputs of the two models, the team could tell how well the models had identified different topographical features. The below selection shows an image the team’s experiment captured on the left, the same image after processing by the AI model trained on the Astro Pi computer in the middle, and the image processed by the AI model trained on Earth.

Three images showing how two image classifier machine learning models perform in comparison.

Team DAHspace from Portugal measured the intensity of the Earth’s magnetic field along the orbit path of the ISS. Using the magnetometer on the Astro Pi, their experiment recorded data allowing the team to track changes of intensity. The team mapped this data to the ISS’s coordinates, showing the difference in the Earth’s magnetic field between the North Pole (points 1 and 2 on the chart below) and the South Pole (points 3 and 4).

Magnetic field data plotted against latitude.

And the winning teams are…

We and our collaborators at ESA Education have been busy reviewing all of the reports to assess the scientific merit, use of the Astro Pi hardware, experiment design, and data analysis. The ten winning teams come from schools and coding clubs in 11 countries. We are sending each team some cool space swag to recognise their achievement. 

Winning teams

TeamExperiment themeBased atCountry
Magnet47Life on EarthO’Neill CVICanada
AretusaLife on EarthLiceo Da Vinci FloridiaItaly
ASaetherLife on Earth“Andrei Saguna” National CollegeRomania
BarrandeLife on EarthGymnázium Joachima Barranda BerounCzech Republic
EscapersLife in spaceCode Club Canada
FuturaLife in spaceScuola Svizzera MilanoItaly
StMarksLife on EarthSt Mark’s Church of England SchoolUnited Kingdom
DAHspaceLife on EarthEB 2,3 D. Afonso HenriquesPortugal
T5CloudsLife on EarthDominican CollegeIreland
PiNutsLife in spaceTEKNISK GYMNASIUM, SkanderborgDenmark

You can click on a team name to read the team’s experiment report. 

Highly commended teams

Along with the winning teams, we would like to commend the following teams for their experiments:

TeamExperiment themeBased atCountry
ParsecLife on EarthLiceo Da Vinci Pascoli GallarateItaly
CelesteLife on EarthInternational School of FlorenceItaly
LionTechLife on EarthColegiul Național ”Mihai Eminescu”Romania
OHSpaceLife in SpaceOxford High SchoolUnited Kingdom
MagnetoLife on EarthThe American School of The HagueNetherlands
GreenEyeLife on EarthROBOTONIOGreece
PrimusLife on EarthIndependent coding clubGermany

You can click on a team name to read the team’s experiment report. 

All of the teams whose Mission Space Lab programs ran on the ISS will receive a certificate signed by ESA astronaut Samantha Cristoforetti. The winning and highly commended teams will also be invited to a live video chat with an ESA astronaut in the autumn.

Samantha Cristoforetti aboard the ISS
Samantha Cristoforetti in gives a thumbs up wearing a space suit.
Samantha Cristoforetti on board the ISS during her Minerva mission and after returning from space. Credit: ESA/NASA

Congratulations to all 2022/23 participants

Huge congratulations to every team that participated in Astro Pi Mission Space Lab. We hope you found it fun and inspiring to take part. 

A big thank you to everyone who has been involved in the European Astro Pi Challenge this year. An amazing 24,850 young people from 29 countries had their programs run in space this year. We can’t wait to do it all again starting in September.

And it’s not just us saying thanks and well done — here’s a special message from ESA astronaut Matthias Maurer:

Looking forward to the next Astro Pi Challenge

On 18 September 2023, we’ll launch the European Astro Pi Challenge for 2023/24. Mission Zero will open in September, and we’ll announce exciting news about Mission Space Lab in September too.

Logo of the European Astro Pi Challenge.

If you know a young person who might be interested in the Astro Pi Challenge, sign up for the newsletter on astro-pi.org and follow the Astro Pi Twitter account for all the latest announcements about how you can support them to take the unique opportunity to write code to run in space.

The post Young people’s amazing experiments in space: Astro Pi Mission Space Lab 2022/23 appeared first on Raspberry Pi Foundation.

Welcome home! An original Astro Pi computer back from space is now on display at the Science Museum

After seven successful years on the International Space Station, 250 vertical miles above our planet, the original two Astro Pi computers that we sent to the ISS to help young people run their code in space have been returned to Earth.

A group of people celebrating the returned Astro Pi computer.
Some Raspberry Pi team members with one of the original Astro Pis back from space

From today, one of these Astro Pi computers will be displayed in the Science Museum, London. You can visit it in the new Engineers Gallery, which is dedicated to world-changing engineering innovations and the diverse and fascinating range of people behind them.

Astro Pi Izzy at the Science Museum in London.

A challenge to inspire young people about space and computing

The original Astro Pis, nicknamed Izzy and Ed, have played a major part in feeding tens of thousands of young people’s understanding and passion for science, mathematics, engineering, computing, and coding. In their seven years on the International Space Station (ISS), Izzy and Ed had the job of running over 70,000 programs created by young people as part of the annual Astro Pi Challenge.

Nicki Ashworth, 21, took part in the first-ever Astro Pi challenge after hearing about the opportunity at a science fair: “I thought it sounded like an interesting project, and good practice for my programming skills. I was young and had no idea of the extent of the project and how much it would influence my future.” 

A young person and adult pose with a cardboard astronaut Tim Peake and an Astro Pi computer.
Nicki with a show model of an Astro Pi computer at the science fair

Like many young people who have participated in the Astro Pi Challenge, Nicki credits the Astro Pi Challenge as an inspiration to learn more about space and programming, and to decide on a career path: “My experience with Astro Pi definitely helped to shape my future choices. I’m currently in my third year of a Mechanical Engineering degree at University of Southampton, specialising in Computational Engineering and Design. I’ve always loved programming, which is why I took part in the Astro Pi competition, but it led to a fascination with space. This encouraged me to look at engineering as a future, and led me to where I am today!”

In the beginning…

It all started in 2014, when we started collaborating with organisations including the UK Space Agency and European Space Agency (ESA) to fly two Astro Pi computers to the ISS for educational activities during the six-month Principia mission of British ESA astronaut Tim Peake.

The Astro Pi computers each consist of a Raspberry Pi computer integrated with a digital camera and an add-on board filled with environmental sensors, all enclosed in a protective aluminium flight case.

Tim Peake with an Astro Pi computer on board the ISS

Commander Tim Peake, Britain’s first visitor to the ISS, accompanied the two first Astro Pi computers on the ISS. He used them to run experiments imagined, designed, and coded by school-age young people across the UK. 

We held a competition in UK schools and coding clubs to invite young people to create experiments that could be run on the Astro Pis. Students conceived experiments and coded them in Python; we tested their Python programs and eventually picked seven to run on Izzy and Ed on the ISS.

A group of young people who took part in the first Astro Pi challenge
A group of young people who took part in the first Astro Pi challenge

The students’ experiments ranged from a simple but beautiful program to display the flag of the country over which the ISS was flying at a given time, to a reaction-time test for Tim Peake to measure his changing abilities across the six-month mission. The measurements from all the experiments were downloaded to Earth and analysed by the students.

“I still feel incredibly honoured to have competed in the very first [Astro Pi Challenge],” says Aaron Chamberlain, 18, who was 11 years old when he took part in the first-ever Astro Pi Challenge in 2015. “The experience was incredible and really cemented my enthusiasm for all things computing and coding. Finally looking at the photos the Raspberry Pi had taken of the astronauts floating 400 km above us was a feeling of awe that I will never forget.”

A young person holds up her Astro Pi Mission Zero certificate.
Participants in the Astro Pi beginners’ activity, Mission Zero, receive unique certificates

The next year, 2016, we expanded our partnership with ESA Education to be able to open up Astro Pi to young people across ESA Member states. The European Astro Pi Challenge has been going from strength to strength each year since, inspiring young people and adult mentors alike.

And today…

In 2021 we decided it was time to retire Izzy and Ed and replace them with upgraded Astro Pi computers with plenty of new and improved hardware, including a Raspberry Pi 4 Model B with 8 GB RAM.

Astro Pi MK II hardware.
The upgraded Astro Pi computers

Dave Honess, STEM Didactics Expert at the European Space Agency, was engineering lead at the Foundation for the first Astro Pi Challenge, and the return of the original hardware is a special event and moment of reflection for him: “It was a strange experience to open the box and hold the original Astro Pis again after all that time and distance they have travelled — literally billions of miles. Even though their mission is over, we will continue to learn from them with a tear-down analysis to find out if they have been affected by their time in space. Since Principia, I have watched the European Astro Pi Challenge grow with pride year on year, but I still feel very fortunate to have been there at the beginning.”

Thanks to the upgraded hardware, we are able to continue to grow the Astro Pi Challenge in collaboration with ESA Education. And each year it’s so exciting to see the creative and ingenious programs tens of thousands of young people from across Europe send us; 24,850 young people took part in the Challenge in the 2022/2023 cycle.

Astro Pi computers on the ISS.
The original and upgraded Astro Pi computers on board the ISS

But how have Astro Pis Izzy and Ed fared in space over these seven years? Jonathan Bell, Principal Software Engineer at Raspberry Pi Limited, had a chance to find out first-hand: “I was lucky enough to have a look inside the returned Astro Pis. I was looking for the cosmetic effects of the unit being on the ISS for so long. On the inside they still look as pristine as when I assembled them! Barely a speck of dust on the internal boards, nor any signs that the external interface ports were worn from their years of use. A few dings and scrapes on the anodised exterior were all that I could see — and a missing joystick cap (as it turns out, hot-melt glue isn’t a permanent adhesive…). It was great to see that they still worked! It made me feel proud for what the team and the Astro Pi programme has achieved over the years. It’s good to have Izzy and Ed back!”

Visit the Science Museum to see an Astro Pi for yourself

The new Engineers Gallery in the Science Museum opens today and is free to visit. Astro Pi computer Izzy is among the amazing exhibits. Learn more at sciencemuseum.org.uk/engineers.

To find out more about the Astro Pi Challenge and how to get involved with your kids at home, your school, or your STEM or coding club, visit astro-pi.org

The next round of the Challenge starts in September — sign up for news to be the first to hear when we launch it.

The post Welcome home! An original Astro Pi computer back from space is now on display at the Science Museum appeared first on Raspberry Pi Foundation.

24850 young people’s programs ran in space for Astro Pi 2022/23

Over 15,000 teams of young people from across Europe had their computer programs run on board the International Space Station (ISS) this month as part of this year’s European Astro Pi Challenge.

Logo of the European Astro Pi Challenge.

Astro Pi is run in collaboration by us and ESA Education, and offers two ways to get involved: Mission Zero and Mission Space Lab.

Mission Zero: Images of Earth’s fauna and flora in space 

Mission Zero is the Astro Pi beginners’ activity. To take part, young people spend an hour writing a short Python program for the Astro Pi computers on the International Space Station (ISS). This year we invited them to create an 8×8 pixel image or animation on the theme of fauna and flora, which their program showed on an Astro Pi LED matrix display for 30 seconds.

This year, 23605 young people’s Mission Zero programs ran on the ISS. We need to check all the programs before we can send them to space and that means we got to see all the images and animations that the young people created. Their creativity was absolutely incredible! Here are some inspiring examples:

Pixel images from Mission Zero participants.

Mission Space Lab: Young people’s experiments on the ISS

Mission Space Lab runs over eight months and empowers teams of young people to design real science experiments on the ISS, executed by Python programs they write themselves. Teams choose between two themes: ‘Life in space’ and ‘Life on Earth’.

This year, the Mission Space Lab programs of 1245 young people in 294 teams from 21 countries passed our rigorous judging and testing process. These programs were awarded flight status and sent to the Astro Pis on board the ISS, where they captured data for the teams to analyse back down on Earth.

Mission Space Lab teams this year decided to design experiments such as analysing cloud formations to identify where storms commonly occur, looking at ocean colour as a measure of depth, and analysing freshwater systems and the surrounding areas they supply water to.

The Earth’s surface from the perspective of the International Space Station.
A selection of images taken by the Astro Pis of the Earth’s surface, including mountains, deserts, Aotearoa New Zealand south island, and lakes

Teams will be receiving their experiment data later this week, and will be analysing and interpreting it over the next few weeks. For example, the team analysing freshwater systems want to investigate how these systems may be affected by climate change. What their Mission Space Lab program has recorded while running on the Astro Pis is a unique data set that the team can compare against other scientific data.

The challenges of running programs in space

For the ‘Life on Earth’ category of Mission Space Lab experiments this year, the Astro Pis were positioned in a different place to previous years: in the Window Observational Research Facility (WORF). Therefore the Astro Pis could take photos with a wider view. Combined with the High Quality Camera of the upgraded Astro Pi computers we sent to the ISS in 2021, this means that the teams got amazing-quality photos of the Earth’s surface.

The Astro Pi computers inside the International Space Station.
The two Astro Pis positioned in an observation window on the ISS

Once the experiments for ‘Life on Earth’ were complete, the astronauts moved the Astro Pis back to the Columbus module and replaced their SD cards, ready for capturing the data for the ‘Life in Space’ experiments.

Running programs in an environment as unique as the ISS, where all hardware and software is put to the test, brings many complexities and challenges. Everything that happens on the ISS has to be scheduled well in advance, and astronauts have a strict itinerary to follow to keep the ISS running smoothly.

The earth’s surface from the perspective of the International Space Station, with a large robotic arm in view.
The Canadarm in view on the ISS, photographed by an Astro Pi computer

As usual, this year’s experiments met with their fair share of challenges. One initial challenge the Astro Pis had this year was that the Canadarm, a robotic arm on the outside of the ISS, was in operation during some of the ‘Life on Earth’ experiments. Although it’s fascinating to see part of the ISS in-shot, it also slightly obscured some of the photos.

Another challenge was that window shutters were scheduled to close during some of the experiments, which meant we had to switch around the schedule for Mission Space Lab programs to run so that all of the experiments aiming to capture photos could do so.

What’s next for Astro Pi?

Well done to all the young people who’ve taken part in the European Astro Pi Challenge this year.

  • If you’ve mentored young people in Mission Zero, then we will share their unique participation certificates with you very soon.
  • If you are taking part in Mission Space Lab, then we wish you the best of luck with your analysis and final reports. We are excited to read about your findings.

If you’d like to hear about upcoming Astro Pi Challenges, sign up to the newsletter at astro-pi.org.

The post 24850 young people’s programs ran in space for Astro Pi 2022/23 appeared first on Raspberry Pi Foundation.

Astro Pi Mission Space Lab 2022/23: 294 teams achieved Flight Status

In brief

We are excited to share that 294 teams of young people participating in this year’s Astro Pi Mission Space Lab achieved Flight Status: their programs will run on the Astro Pis installed on the International Space Station (ISS) in April.

Mission Space Lab is part of the European Astro Pi Challenge, an ESA Education project run in collaboration with the Raspberry Pi Foundation. It offers young people the amazing opportunity to conduct scientific investigations in space, by writing computer programs that run on Raspberry Pi computers on board the International Space Station.

In depth

To take part in Mission Space Lab, young people form teams and choose between two themes for their experiments, investigating either ‘Life in space’ or ‘Life on Earth’. They send us their experiment ideas in Phase 1, and in Phase 2 they write Python programs to execute their experiments on the Astro Pis onboard the ISS. As we sent upgraded Astro Pis to space at the end of 2021, Mission Space Lab teams can now also choose to use a machine learning accelerator during their experiment time.

In total, 771 teams sent us ideas during Phase 1 in September 2022, so achieving Flight Status is a huge accomplishment for the successful teams. We are delighted that 391 teams submitted programs for their experiments. Teams who submitted had their programs checked for errors and their experiments tested, resulting in 294 teams being granted Flight Status. 134 of these teams included some aspects of machine learning in their experiments using the upgraded Astro Pis’ machine learning accelerator.

The 294 teams to whom we were able to award Flight Status this year represent 1245 young people. 34% of team members are female, and the average participant age is 15. The 294 successful teams hail from 21 countries; Italy has the most teams progressing to the next phase (48), closely followed by Spain (37), the UK (34), Greece (25), and the Czech Republic (25).

Life in space

Teams can use the Astro Pis to investigate life inside ESA’s Columbus module of the ISS, by writing a program to detect things with at least one of the Astro Pi’s sensors. This can include for example the colour and intensity of light in the module, or the temperature and humidity.

Two Astro Pis on board the International Space Station.
Mark II Astro Pis on the ISS

81 teams that created ‘Life in space’ experiments have achieved Flight Status this year. Examples of experiments from this year are investigating how the Earth’s magnetic field is felt on the ISS, what environmental conditions the astronauts experience compared to those on Earth directly beneath the ISS as it orbits, or whether the cabin might be suitable for other lifeforms, such as plants or bacteria.

Life on Earth

In the ‘Life on Earth’ theme, teams investigate features on the Earth’s surface using the cameras on the Astro Pis, which are positioned to view Earth from a window on the ISS.

An Astro Pi in a window on board the International Space Station.
Astro Pi VIS in the window on the ISS

This year the Astro Pis will be located in the Window Observational Research Facility (WORF), which is larger than the window the computers were positioned in in previous years. This means that teams running ‘Life on Earth’ experiments can capture better images. 206 teams that created experiments in the ‘Life on Earth’ theme have achieved Flight Status.

Thanks to the upgraded Astro Pi hardware, this is the second year that teams could decide whether to use visible-light or infrared (IR) photography. Teams running experiments using IR photography have chosen to examine topics such as plant health in different regions, the effects of deforestation, and desertification. Teams collecting visible light photography have chosen to design experiments analysing clouds in different regions, changes in ocean colour, the velocity of the ISS, and classification of biomes (e.g. desert, forest, grassland, wetland).

Testing, testing

Each of this year’s 391 submissions has been through a number of tests to ensure they follow the challenge rules, meet the ISS security requirements, and can run without errors on the Astro Pis. Once the experiments have started, we can’t rely on astronaut intervention to resolve any issues, so we have to make sure that all of the programs will run without any problems. 

Four photographs of the Earth and cloud formations, taken from the International Space Station by an Astro Pi.
Images taken by Astro Pi VIS on the ISS in Mission Space Lab 2021/22

This means that the start of the year is a very busy time for us. We run tests on Mission Space Lab teams’ programs on a number of exact replicas of the Astro Pis, including a final test to run every experiment that has passed all tests for the full three-hour experiment duration. The 294 experiments that received Flight Status will take over 5 weeks to run.

97 programs submitted by teams during Phase 2 of Mission Space Lab this year did not pass testing and so could not be awarded Flight Status. We wish we could run every experiment that is submitted, but there is only limited time available for the Astro Pis to be positioned in the ISS window. Therefore, we have to be extremely rigorous in our selection, and many of the 97 teams were not successful because of only small issues in their programs. We recognise how much work every Mission Space Lab team does, and all teams can be very proud of designing and creating an experiment.

Even if you weren’t successful this year, we hope you enjoyed participating and will take part again in next year’s challenge.

What next?

Once all of the experiments have run, we will send the teams the data collected during their experiments. Teams will then have time to analyse their data and write a short report to share their findings. Based on these reports, we will select winners of this year’s Mission Space Lab. The winning and highly commended teams will receive a special surprise.

Congratulations to all successful teams! We are really looking forward to seeing your results.

The post Astro Pi Mission Space Lab 2022/23: 294 teams achieved Flight Status appeared first on Raspberry Pi Foundation.

Inspiring young people to code with the Astro Pi Challenge and astronaut Matthias Maurer

The European Astro Pi Challenge offers young people the opportunity to write computer programs that run on Raspberry Pi computers on board the International Space Station (ISS). There are two free, annual missions to participate in: Mission Zero and Mission Space Lab.

Logo of Mission Zero, part of the European Astro Pi Challenge.

Sending your computer program to space is amazing already, and to inspire even more young people about this opportunity, we’re sharing some of the fascinating stories European Space Agency astronaut Matthias Maurer told last round’s Mission Space Lab team winners about his experiences on the ISS.

Matthias on the ISS, catching Astro Pis in microgravity.
ESA astronaut Matthias Maurer with the Astro Pi computer on board the ISS. Photo credit: ESA/NASA

Last round’s winning Mission Space Lab teams were invited to a very special online session with Matthias, and he shared lots of thoughtful and surprising insights from his mission on the International Space Station. Here are three of the questions from the teams and what Matthias had to say:

1. Working together

Lots of the teams wanted to know about the practicalities of life on the ISS. Team Ad Astra from the UK asked “How did you and your crewmates ensure that you got on well together?” Matthias talked about how supporting each member of the team helps everyone work well together:

2. Talking to family

It was surprising to hear that the astronauts on the ISS have lots of opportunities to communicate with people on Earth. Matthias explained how the astronauts can keep in regular contact with their family while answering the question from Team Atlantes from Spain: 

3. Cutting-edge technology

Team NanoKids asked Matthias about the technologies astronauts use on the ISS, and Matthias shared some fascinating glimpses into what tools help the astronauts in their surroundings:

Thank you to all the teams for these great questions. And thank you to Matthias for offering young people a peek into what life is like in space!

You can still get involved in this round of Astro Pi Mission Zero

We hope Matthias’ stories inspire lots of young people to take part in the European Astro Pi Challenge. Registration for this round of Mission Space Lab is closed, so why not sign up for news about the next round?

But it’s not too late for young people to get involved today and become part of space history. Astro Pi Mission Zero is still open for participation a little while longer — until 17 March.

Mission Zero is a beginner’s coding activity, so it’s really easy to get involved: young people just need a grown-up to register for them, and a computer with a web browser to participate. In Mission Zero, young people up to age 19 in eligible countries have the chance to send their own simple computer program into space to display a colourful image for the astronauts to see on the ISS.

Pixel art animals.
Pixel art plants.
Images created by Mission Zero 2021/22 participants

The one-hour Mission Zero activity comes with step-by-step instructions for young people to follow. No special equipment or coding skills are needed, and all eligible young people who follow the guidelines will have their program run in space. Every Mission Zero participants receives a certificate to show the exact time and the location of the ISS during their programs run, so they’ll have something to remember their stellar achievement.


The European Astro Pi Challenge is an ESA Education project run in collaboration with us here at the Raspberry Pi Foundation.

The post Inspiring young people to code with the Astro Pi Challenge and astronaut Matthias Maurer appeared first on Raspberry Pi Foundation.

768 teams of young people have entered Astro Pi Mission Space Lab 2022/23

Par : Sam Duffy

This year, 768 teams made up of 3086 young people from 23 countries sent us their ideas for experiments to run on board the International Space Station (ISS) for Astro Pi Mission Space Lab.

alt=""

Mission Space Lab is part of the European Astro Pi Challenge, an ESA Education programme run in collaboration with us at the Raspberry Pi Foundation. Mission Space Lab teams can choose between ‘Life on Earth’ and ‘Life in space’ for their experiment idea. As in previous years, ‘Life on Earth’ was the most popular experiment theme: three quarters of the teams chose to submit an idea with this theme, for experiments using one of the Astro Pi’s High Quality Cameras. Half of these experiments involved using the near-infrared sensitive camera to investigate topics such as deforestation. Across both themes, over 40% of teams expressed an interest in using machine learning in their experiment.

Mission Space Lab teams are now getting ready to write and test their code

A panel of 25 judges from the Raspberry Pi Foundation and ESA Education assessed the submitted ideas. We are restricted in how many teams we can accommodate, as time to run experiments on board the ISS is limited, especially for ‘Life on Earth’ experiments which need time in a nadir window. The standard of the submitted ideas was higher than ever, making this the toughest judging yet. We are delighted to announce that 486 teams will move on to Phase 2 of Mission Space Lab: writing the code for their experiments.

An Astro Pi unit at a window on board the International Space Station.
A Mark II Astro Pi in the NODE window on the ISS. Credit: ESA/NASA

If your experiment idea was unsuccessful this time, we understand that this will be disappointing news for your team. We encourage them to submit a new experiment idea in next year’s Mission Space Lab. We will let you know when Mission Space Lab 23/24 will be launching.

All the teams whose experiment ideas we’ve selected will receive a special Astro Pi hardware kit, customised to their idea, to help them write and test the Python programs to execute their experiments. Once the teams of young people have received their kits, they can familiarise themselves with the Astro Pi hardware and then create and test (and re-test!) their programs.

Young people’s Mission Space Lab code will run in space next year

The deadline for Mission Space Lab teams to submit the code for their experiments to us is Thursday 24 February 2023. Once their program code has been through our rigorous checks and tests, it will be ready to run on the Astro Pis on board the ISS during April/May 2023.

Astro Pi computers on the ISS.
The Mark I and Mark II Astro Pi computers on board the ISS earlier this year. Credit: ESA/NASA

Congratulations to the successful teams, and thank you to everyone who sent us their ideas for Mission Space Lab this year. And a special thank you to all the teachers, educators, club volunteers, and other wonderful people who are acting as mentors for Mission Space Lab teams. You are helping your young people do something remarkable that they will remember for the rest of their lives, and the Astro Pi Challenge would not happen without you.

Welcome back, Ed and Izzy! 

Every year since 2015, thanks to our annual Astro Pi Challenge, teams of young people have written computer programs to run scientific experiments on two Astro Pi computers on the ISS.

Mark I Astro Pi computers Ed and Izzy back on Earth on a desk, after 5 years on board the International Space Station.
Mark I Astro Pi computers Ed and Izzy back on Earth after five years on board the International Space Station. Credit: ESA

This is the second year that experiments will run on the Mark II Astro Pi computers, named after Nikola Tesla and Marie Curie, but lots of people have been wondering what would happen to their predecessors. After running over 50,000 young people’s computer programs, the Mark I Astro Pi computers, Ed and Izzy, have safely returned to Earth for a well-earned rest.

Young people can take part in Astro Pi Mission Zero

Astro Pi Mission Zero is a one-hour beginners’ programming activity. In Mission Zero, young people, in teams or as individuals, write a program to display an image or series of images of their own design on one of the Astro Pi computers, to remind the astronauts on the ISS of home.

Logo of Mission Zero, part of the European Astro Pi Challenge.
Samantha Cristoforetti.
ESA astronaut Samantha Cristoforetti with an Astro Pi computer. Credit: ESA/NASA

In their Mission Zero programs, young people get to use a reading from the Astro Pi’s colour and luminosity sensor to set the colour of their image background. Young people up to age 19 from eligible countries can take part in Mission Zero 2022/23 until 17 March. Visit the Astro Pi website for more details.

The post 768 teams of young people have entered Astro Pi Mission Space Lab 2022/23 appeared first on Raspberry Pi.

The European Astro Pi Challenge is back for 2022/23

Par : Sam Duffy

The European Astro Pi Challenge is back for another year. This is young people’s chance to write computer programs that run on board the International Space Station.

ESA astronaut Samantha Cristoforetti.
ESA astronaut Samantha Cristoforetti with one of the upgraded Astro Pi computers on which young people’s programs will run.

Young people can take part in two Astro Pi challenges: Mission Zero and Mission Space Lab. Participation is free and open for young people up to age 19 in ESA Member States (see more details about eligibility on the Astro Pi website). Young people can participate in one or both of the challenges.

Their programs will run on the two new upgraded Astro Pi computers, which launched into space in December 2021. The Astro Pis were named after the two inspirational European scientists Nikola Tesla and Marie Skłodowska-Curie by Mission Zero participants. For the 2021/22 European Astro Pi Challenge, these new computers ran over 17,000 programs written by young people from 26 countries. 

Here is ESA astronaut Matthias Maurer getting the new Astro Pis ready for young people’s experiments.

You can register for Mission Space Lab from today

In Mission Space Lab, teams of young people work together with a mentor who supports them, as they design a scientific experiment to be run on the Astro Pis in space.

alt=""

Teams write programs that use an Astro Pi’s sensors and camera to collect data from the International Space Station, which the teams then analyse. This video has more information about the Astro Pi computers and how teams can choose an experiment idea:

Registration for Mission Space Lab is now open, and participation takes place over eight months. Mentors need to register their team and submit the team’s experiment idea by 28 October 2022. For more details on how to register, visit the Mission Space Lab webpages. 

For inspiration, you can read the reports written by the winning teams for Mission Space Lab 2021/22. What will your team’s experiment idea be? We can’t wait to hear about it.

Mission Zero is starting soon

Mission Zero is the beginners’ challenge where young people write a simple program and get a taste of space science.

Logo of Mission Zero, part of the European Astro Pi Challenge.

All eligible programs that follow the official guidelines will run in space for up to 30 seconds. The young people who participate receive a certificate they can download which shows their program’s exact start and end time, and the position of the ISS when their program ran — a piece of space science history to keep!

Mission Zero opens on 22 September 2022. Watch this space for more details on launch day.

Stay up to date

The European Astro Pi Challenge is an ESA Education project run in collaboration with us here at the Raspberry Pi Foundation.

You can stay up to date with all of the latest Astro Pi news by following the Astro Pi Twitter account or signing up to the newsletter at astro-pi.org

The post The European Astro Pi Challenge is back for 2022/23 appeared first on Raspberry Pi.

Astro Pi Mission Space Lab: The journey of two mentors

Sobhy Fouda started his Astro Pi journey in 2019 by helping a group of young people participate in Astro Pi Mission Zero, the beginners’ activity of the annual European Astro Pi Challenge. In Mission Zero, participants write a simple computer program that runs on board the International Space Station (ISS).

A group of young people who participated in the Astro Pi Challenge.
Sobhy with a group of the young people he mentored in the Astro Pi Challenge.

Seeing the wonder on the faces of the young people on the day when their programs were sent to space motivated Sobhy to take the next step: the year after, he became the mentor of a team of young people who wanted to take part in Astro Pi Mission Space Lab 2020/21. Sobhy supported them for 8 months as they designed and wrote a program to conduct their own scientific experiment on the ISS. The team placed among the 10 winners of Mission Space Lab that year.

Logo of the European Astro Pi Challenge.

Among this winning team was Ismail, who joined Sobhy as a mentor for the next round of Astro Pi Mission Space Lab in 2021/22. We spoke to Sobhy and Ismail about their experiences as mentors, about how being involved in Astro Pi changed their life, and about how when you dream big, you can inspire others to do the same.

Finding inspiration in mentoring young people

“I have always loved space and I had big dreams of becoming a pilot,” said Sobhy. After graduating with a mechatronics engineering degree from the German University in Cairo, he moved to the UK to study aircraft maintenance and aerospace engineering. During this time, Sobhy heard about the Astro Pi Challenge and decided to support some young people in his community to take part in Mission Zero. “It was my first experience with the Astro Pi programme, so it was a great first step for me to teach the team some basic Python skills.”

Sobhy Fouda, Astro Pi Mission Space Lab mentor.
Sobhy says about mentoring: “Seeing the team’s reaction was so rewarding.”

Sadly, Sobhy was unable to continue down his chosen career path in the UK due to health issues. He said, “It was a very difficult time for me. It was hard to walk away from a dream I had held for so long. I decided to apply for a scholarship within aerospace in Germany, focusing more on writing code, as well as on R&D [research and development].” Sobhy credited his participation as a mentor in Mission Zero as crucial to his success with this next step: “I thoroughly believe that my mentorship of a Mission Zero team helped me to demonstrate my social commitment, which was a significant requirement for the scholarship.”

When Sobhy was awarded the scholarship, he and his wife moved to Berlin, but it was hard for him to find inspiration. This changed when he decided to be an Astro Pi mentor again. “My wife put the word out about it [Astro Pi Mission Space Lab] in my community, and we had a number of young people come forward.”

Supporting young people to understand the Astro Pi computers

With help from Sobhy, his Mission Space Lab team started thinking through experiment ideas a couple of months in advance of the challenge start. “Once I had got the kids familiarised with the sensors on the Astro Pi computer and the conditions on the ISS, it was the logical next step to start introducing more Python to learn how to control these sensors and discuss what we could analyse.”

Astro Pi computers on the ISS.
On the ISS, the first-generation Astro Pi computers, which Sobhy’s team used, and the new Astro Pi computers (with green displays), which we sent to space last year.

Sobhy’s team successfully submitted an idea for a Mission Space Lab experiment: investigating how the Earth’s magnetic field correlates with its climate, and how this affects near-Earth objects’ behaviour in low-Earth orbit. Next, the team of young people received an Astro Pi hardware kit with which to test the program they wrote in realistic conditions. Sobhy said that “once we received our Astro Pi kit with the sensors, I then used these sensors to make the experiments more relatable to the kids, getting them to measure the humidity in their rooms for example, and I tried to gamify the sessions as much as possible to keep it fun and ignite their imagination.”

A photo of the Maledives taken from the International Space Station by an Astro Pi unit programmed by a Mission Space Lab team.
A photo of the Maledives captured by Sobhy’s team during their experiment for Mission Space Lab 2020/21.

One young person on Sobhy’s Mission Space Lab team was Ismail, who was 17 at the time. Ismail explained, “I had some programming experience, as I had worked in Sobhy’s previous teams for Mission Zero, but taking part in Mission Space Lab really helped me to develop these skills in a practical way.”

Ismail, Astro Pi Mission Space Lab mentor.
Ismail, who went from being an Astro Pi participant to mentoring a team together with Sobhy

Ismail was particularly surprised by how much he loved working with the Astro Pi hardware . “I always thought I would follow a career path in programming, however, working with the Raspberry Pi computer and its sensors made me realise that I liked working with the hardware even more than doing programming,” said Ismail. “I ended up changing my choice of degree to mechatronics, so my Mission Space Lab experience really helped me to find the career path I was meant to be on.”

Making a real impact through mentoring

Taking part in Astro Pi Mission Space Lab wasn’t the only thing that shaped Ismail’s path: he credits Sobhy’s mentorship for helping him achieve his goals. “Sobhy was such a good mentor. His passion for the project radiated from him and infected us all! He explained what we needed to tackle, asked questions, and then gave us small activities to put our programming experience into practice in a practical way. It made the programming so much more interesting.”

Sobhy said that when the team was announced among the winners of Mission Space Lab in the 20/21 Astro Pi Challenge, “seeing the team’s reaction was so rewarding. All our hard work paid off, and I was so happy and proud of the team and what they had achieved.” Ismail added, “I still have to pinch myself that we actually won. I’m constantly asking myself if it actually happened, as it was so unbelievable. It was incredible.”

The river Nile in Egypt shown from space by an Astro Pi computer on the International Space Station.
The river Nile in Egypt, photographed by Sobhy’s team during their experiment for Mission Space Lab 2020/21.

Sobhy has stayed in contact with the young people he mentored in the Astro Pi Challenge and their bond remains strong. Ismail said, “He has really become a friend. He was always so helpful and knowledgeable. I just loved working with him, so when he asked if I wanted to become an assistant Astro Pi mentor, I took the opportunity despite having other commitments.”

Mentoring and the skills it teaches

Moving on to become a mentor alongside Sobhy in the 2021/22 Astro Pi Challenge was an eye-opening experience for Ismail. “I had to learn a new set of skills,” said Ismail. “In particular, I realised I needed to improve my presentation skills. To start with I was really uncomfortable speaking in front of a group, but now I’m not, and this confidence transferred over to my university studies. That’s been a really great benefit I’ve taken from the experience.”

“[My] Mission Space Lab experience really helped me to find the career path I was meant to be on.”

Ismail, Mission Space Lab participant and mentor

For us it was wonderful to hear about these lasting friendships and connections that have formed  among the people participating in Mission Space Lab. Both Sobhy and Ismail felt that while mentoring a Mission Space Lab team can be challenging at times, the rewards are worth it. Watching their team develop and seeing the young people connect made the experience extremely rewarding. 

Ismail concluded by saying: “Astro Pi has been one of the best experiences I have had in my life. I have so much to be thankful for, and I owe this to Astro Pi, but even more to my mentor Sobhy. He has encouraged me to have this incredible experience, helped me find my path in life, and guided me every step of the way. I will remember him and be thankful to him for the rest of my life. It’s been life-changing.”

Get involved in Astro Pi Mission Space Lab

In only a few days, you’ll be able to register as a team mentor for Astro Pi Mission Space Lab 2022/23.

Logo of Mission Space Lab, part of the European Astro Pi Challenge.

The European Astro Pi Challenge, an ESA education programme in collaboration with us at the Raspberry Pi Foundation, starts again from 12 September. Sign up to the newsletter at astro-pi.org to be the first to hear news about the programme.

The post Astro Pi Mission Space Lab: The journey of two mentors appeared first on Raspberry Pi.

Astro Pi Mission Space Lab 2021/22: The results

Par : Sam Duffy

It’s been an incredible year for the European Astro Pi Challenge. We’ve sent new hardware into space, seen record numbers of young people participate in the Challenge, and received lots of fantastic programs. Before we say goodbye to the 2021/22 European Astro Pi Challenge, the Raspberry Pi Foundation and the European Space Agency are thrilled to announce this year’s winning and highly commended Mission Space Lab teams. 

What is Mission Space Lab?

In Mission Space Lab, teams of young people aged up to 19 work together to create scientific experiments to be carried out on the International Space Station. Their mission is to design and create a program to run on the two Astro Pi computers — space-adapted Raspberry Pis with cameras and a range of sensors.  

Samantha Cristoforetti.
ESA astronaut Samantha Cristoforetti with the new Astro Pi computers on the ISS
Credit: ESA/NASA

This year, 799 teams of young people designed experiments and entered Mission Space Lab and 502 of these teams were invited to Phase 2, which is 25% more than last year! The teams each received an Astro Pi kit to write and test their programs on and 299 teams submitted programs that passed rigorous testing at Astro Pi Mission Control and achieved ‘flight status’.

After their program collected data during the experiment’s three-hour runtime on the ISS, each team analysed the results and wrote a short report to describe their experiment.  

We were especially excited to see what experiments young people would investigate this year, as their programs would be the first to run on the brand-new Astro Pi units, which were named after Nikola Tesla and Marie Curie by participants in this year’s Mission Zero.

Astro Pi computers on the ISS.
The two original Astro Pis with the new upgraded Astro Pis, together on the ISS
Credit: ESA/NASA

Let’s take a look at the teams’ investigations for Mission Space Lab 2021/22!

Clouds, volcanos, and seaweed rafts

In this year’s Challenge, the environment and climate change was a strong theme among the 205 team experiment reports. Several teams investigated topics such as changing water levels, wildfires, and the effect of different clouds and aeroplane contrails on global warming. 

Team Seekers from Itis Delpozzo Cuneo in Italy and Team Adastra from St Paul’s Girls’ School in the UK made observations about reduction of water levels in the Aral Sea, located between Kazakhstan and Uzbekistan.

The Aral Sea photographed from the ISS by team Adastra.
Team Adastra compared their image of the Aral Sea with data from Google Earth to show the significant decrease in water coverage

“We have gained skills with data research and machine learning, in relation to scientific experiments, which will hopefully give us a basis to move into more complex projects with machine learning.”

Team Adastra

Team St Marks from Saint Marks Church of England School in the UK calculated NDVI (normalised difference vegetation index) for images they had captured to look for macroplastics in the ocean. This is a technique for identifying vegetation from images. The team used it to search for the rafts of sargassum seaweed that form around plastics floating on the water. They were lucky enough to successfully photograph and identify several seaweed rafts during their three hour experiment time. 

Seaweed rafts photographed on the ISS by team St Marks.
Two seaweed rafts (circled in red) off the coast of Brazil captured by Team St Marks

Team Nanokids from the UK used the Coral machine learning accelerator to analyse images of clouds in real time. Collecting this data could be used to warn aircraft of the risk of turbulence, predict weather, and detect pollution. The team reported that they “learned a lot about the various different cloud types, their characteristics and their different effects, as well as how to create a simple ML model with Teachable Machine, which will help us in future projects.”

Cumulonimbus cloud photographed on the ISS by team Nanokids.
Cumulonimbus cloud analysed by Team Nanokids

Team Centauri from Diverbot in Spain were inspired by the influence of high altitude cloud vapour on the Greenhouse Effect to calculate the height of clouds from images taken by the Raspberry Pi High Quality Camera. They identified the potential to scale-up their experiment, in order to analyse hundreds or thousands of images of clouds and calculate their impact on the temperature of the Earth. 

Cloud formations photographed on the ISS by team Centauri.
Some examples of the cloud formations analysed by Team Centauri

We also saw lots of experiment reports about volcanoes. Team Six Sense from Escola Secundária Inês de Castro in Portugal ran an experiment inspired by the La Palma volcano, which erupted in September 2021. The team’s experiment captured images of a volcano in Fogo Island, Cape Verde. 

Team LandISS from Liceo Scientifico “A. Landi” in Italy captured an extraordinary image of emissions from the Popocatépetl volcano in Mexico, which reactivated in 1994 and has been producing powerful explosions at irregular intervals ever since.

Popocatépetl Volcano photographed from the ISS by team LandISS.
Popocatépetl volcano in the Iztaccíhuatl–Popocatépetl National Park by Team LandISS

Team DuoDo from Liceul Teoretic Tudor Vianu in Romania investigated if there had been changes to vegetation health on the Earth since the pandemic, by comparing NDVI calculations from their data. The judges were especially impressed with how they reported their analysis and results.

NDVI processing by team DoDuo.
NDVI processing by Team DoDuo


Team Atlantes from Niubit in Spain wanted to build a bridge between the real and virtual world by visualising their NDVI calculations as a three dimensional Minecraft video game. Check out how they did this and some of their results in their video.

From ISS 🛰️ to Minecraft 🧱 : Astro Pi Mission Space Lab 2021-22 by Team Atlantes

Team Rocha21, from IES José Frugoni Pérez in the Canary Islands, also explored different ways to communicate and share their data. They used sonoUno (software originally developed to sonify astronomical data) and online Braille translators to design tactile diagrams in order to explore their Life on Earth photographs and NDVI data, working in collaboration with six visually-impaired students.

Up in space

Some of this year’s Mission Space Lab teams chose to conduct their experiments about life on the ISS. We saw experiments to investigate the possibility for growing fungi as space crops (Team NGC224 from CoderDojo Perugia in Italy) and the effect of temperature and pressure on the human body on Earth and in space (Team CDV-CDI2 from CoderDojo Votanikos in Greece, in collaboration with CoderDojo Iraq).

Team Hyperion from JVS Hyperion in Belgium investigated the effect of the sun on the Earth’s magnetic field, comparing data collected during daytime and nighttime as the ISS orbited Earth.

Not only did we get to see this year’s experiments, but we also had a chance to hear them! Sound and music was very popular among the Mission Space Lab teams. 

Team Cuza3 from Colegiul National ”Alexandru Ioan Cuza” in Romania, made “The Ballad of Pressure” by attributing notes to pressure data from the ISS. Team Alessi Pi from Liceo Scientifico “G.Alessi” in Italy made a melody by mapping data to a music scale with other sensor readings mapped to additional instruments. 

Team Gubbins, from Hyvinkään Lukio in Finland, measured magnetic flux density to determine the strength of the Earth’s magnetic field, using the Astro Pi magnetometer, which they sonified and used to make a music video. 

Sonification of the Earth’s magnetic field by Team Gubbins

And the winning teams are…

The judges from ESA and the Raspberry Pi Foundation took on the huge task of reviewing all the reports to consider scientific merit, experiment design and methodology, data analysis, report quality, and innovative use of the Astro Pi hardware. 

The ten winning teams come from coding clubs and schools from France, Italy, Greece, Spain, Romania, and the United Kingdom and will each receive cool space swag. 

Winning teams

TeamProjectOrganisationCountry
AdAstraLife on EarthSt Paul’s Girls’ SchoolUnited Kingdom
AsterixLife on EarthHouseholdFrance
AtlantesLife on EarthNiubitSpain
BetFracLife on EarthEscoles BetlemSpain
CentauriLife on EarthDiverbotSpain
DoDuoLife on EarthLiceul Teoretic Tudor VianuRomania
DSpiLife on EarthPEKTPE GrevenonGreece
GreenPiLife in SpaceIESS European High SchoolItaly
NanoKidsLife on EarthHouseholdUnited Kingdom
RedsTeamLife in SpaceHouseholdItaly

Highly commended teams

TeamProjectOrganisationCountry
CDV-CDILife on EarthCoderDojo Votanikos and
CoderDojo Iraq
Greece
CorMatLife on EarthSint-Jan BerchmanscollegeBelgium
ISFLife in SpaceLuxembourg Tech SchoolLuxembourg
LAZOS22Life on EarthAux Lazaristes La SalleFrance
PithonsLife on EarthThe Perse SchoolUnited Kingdom
Rocha21Life on EarthIES José Frugoni PérezSpain

Click each team name to read their experiment report. 

Every Astro Pi team that reached Phase 3 of Mission Space Lab will receive a certificate signed by ESA astronaut Samantha Cristoforetti to show family and friends that they have had a scientific experiment run on the ISS! 

The winning and highly commended teams will be invited to an online Q&A with an ESA astronaut in the autumn. Look out for more information about this soon!  

Congratulations Mission Space Lab teams 2021/22

Everyone from the Raspberry Pi Foundation and ESA Education teams congratulates this year’s Mission Space Lab participants — we hope you found it as fun and inspiring as we did! 

Thank you to everyone who has been involved in Mission Zero and Mission Space Lab as part of this year’s Challenge. It has been incredible to have 28,126 young people from 26 countries run their programs in space! We can’t wait to do it all again. 

When will the 2022/23 European Astro Pi Challenge lift off?

Mission Zero and Mission Space Lab relaunch in September 2022!

If you know a young person who would be interested in the Challenge, sign up for the newsletter on astro-pi.org and follow the Astro Pi Twitter account for all the latest announcements.

""

The post Astro Pi Mission Space Lab 2021/22: The results appeared first on Raspberry Pi.

The names of the new Astro Pi computers get revealed

Par : Sam Duffy

We and our collaborators at ESA Education are excited to announce that 17,168 programs written by young people from 26 countries have been successfully deployed on board the International Space Station (ISS) for the European Astro Pi Challenge 2021/22. And we can finally reveal the names of the two new and upgraded Astro Pi computers that Astro Pi participants have chosen.

The mark 2 Astro Pi units spin in microgravity on the International Space Station.
Young people participating in this year’s Astro Pi Mission Zero had the chance to help name these two upgraded Astro Pi computers, which we sent to the ISS in December.

Astro Pi is more popular than ever with young people

A record number of 28,126 young people took part across both missions in the Astro Pi Challenge 2021/22. In addition to the 299 Mission Space Lab teams who achieved flight status with the code they wrote for their scientific experiments this year, young people wrote 16,869 Mission Zero programs that were run on the new Astro Pi computers. This is an amazing 84% increase compared to Mission Zero last year.

Mission Zero is perfect for beginner coders: participants follow our step-by-step instructions and write a simple program for the Astro Pis. The program takes a humidity reading on board the ISS and displays it for the astronauts. Participants can also include code to display their own unique message on the Astro Pi LED displays. Mission Zero teams are very inventive, and the young people made great use of the Astro Pis’ LED display to create pixel art:

Pixel art coded by young people in Astro Pi Mission Zero.
Examples of pixel art images designed by Mission Zero 2021/22 teams for the Astro Pis’ LED displays.

Every Mission Zero participant receives a unique certificate showing exactly where the ISS was on its orbital path when their program was run:

A certificate of participation for a young person who has coded a program in Astro Pi Mission Zero
The orbital path of the ISS above a map of Earth.

The new Astro Pi computers’ names

This year, the deployment of all the Mission Zero and Mission Space Lab programs was overseen by ESA astronaut Matthias Maurer. But before he could do that, he first had an extra special task: unpacking and assembling the brand-new Astro Pi units in microgravity.

Matthias catching Astro Pis in microgravity.

The two original Astro Pis, named Ed and Izzy, travelled to the ISS back in 2015 as part of Tim Peake’s Principia mission. Since then, these two special Raspberry Pi computers have run programs written by more than 54,000 young people. They have done an amazing job and will return to Earth later in 2022.

This year’s European Astro Pi Challenge is the first to use the two all-new Astro Pi computers, which we sent up to the ISS in December 2021. They are packed with special features, widening young people’s possibilities for new Mission Space Lab experiments. Running this year’s 17,168 programs was the new Astro Pis’ first task. 

Two Astro Pi units on board the International Space Station.
The two new Astro Pi computers on board the ISS

All young people taking part in Mission Zero this year had the once-in-a-lifetime opportunity: they got to suggest and vote for the names of the two new Astro Pi computers. We received nearly 7,000 name suggestions.

ESA astronaut Matthias Maurer has recorded a special message for all Astro Pi participants, revealing that the new Astro Pi computers will be named in honour of two inspirational European scientists drum roll… Nikola Tesla and Marie Curie!

The Astro Pi unit equipped with a Raspberry Pi High Quality Camera that is sensitive to near-infrared light is now called Nikola Tesla, and the Astro Pi unit with a visible-light sensitive High Quality Camera is now called Marie Curie.

Marie Curie, whose full name is Marie Salomea Skłodowska–Curie, was born in Poland in 1867 and the first person ever to win two Nobel Prizes, in Physics and Chemistry, for her contribution to pioneering work on radioactivity and the treatment of cancer. Nikola Tesla was born in Croatia in 1856, and his innovations in electrical engineering included alternating current — vital for transmitting electricity over long distances — and the induction motor.

Marie Curie.
Marie Curie
Nikola Tesla.
Nikola Tesla

Marie Skłodowska–Curie and Nikola Tesla’s work continues to impact all of our lives today, and we are delighted that this year’s Astro Pi participants have democratically chosen their names for the new Astro Pi computers.

Sign up for news about the next Astro Pi Challenge

The European Astro Pi Challenge will be back again in September 2022. Subscribe to the Astro Pi newsletter on the Astro Pi website to be the first to hear when the 2022/23 missions have lift off! 

The post The names of the new Astro Pi computers get revealed appeared first on Raspberry Pi.

Join us at the launch event of the Raspberry Pi Computing Education Research Centre

Last summer, the Raspberry Pi Foundation and the University of Cambridge Department of Computer Science and Technology created a new research centre focusing on computing education research for young people in both formal and non-formal education. The Raspberry Pi Computing Education Research Centre is an exciting venture through which we aim to deliver a step-change for the field.

school-aged girls and a teacher using a computer together.

Computing education research that focuses specifically on young people is relatively new, particularly in contrast to established research disciplines such as those focused on mathematics or science education. However, computing is now a mandatory part of the curriculum in several countries, and being taken up in education globally, so we need to rigorously investigate the learning and teaching of this subject, and do so in conjunction with schools and teachers.

You’re invited to our in-person launch event

To celebrate the official launch of the Raspberry Pi Computing Education Research Centre, we will be holding an in-person event in Cambridge, UK on Weds 20 July from 15.00. This event is free and open to all: if you are interested in computing education research, we invite you to register for a ticket to attend. By coming together in person, we want to help strengthen a collaborative community of researchers, teachers, and other education practitioners.

The launch event is your opportunity to meet and mingle with members of the Centre’s research team and listen to a series of short talks. We are delighted that Prof. Mark Guzdial (University of Michigan), who many readers will be familiar with, will be travelling from the US to join us in cutting the ribbon. Mark has worked in computer science education for decades and won many awards for his research, so I can’t think of anybody better to be our guest speaker. Our other speakers are Prof. Alastair Beresford from the Department of Computer Science and Technology, and Carrie Anne Philbin MBE, our Director of Educator Support at the Foundation.

Mark Guzdial.
Prof. Mark Guzdial
Headshot of Alastair Beresford.
Prof. Alastair Beresford
Headshot of Carrie Anne Philbin.
Carrie Anne Philbin MBE

The event will take place at the Department of Computer Science and Technology in Cambridge. It will start at 15.00 with a reception where you’ll have the chance to talk to researchers and see the work we’ve been doing. We will then hear from our speakers, before wrapping up at 17.30. You can find more details about the event location on the ticket registration page.

Our research at the Centre

The aim of the Raspberry Pi Computing Education Research Centre is to increase our understanding of teaching and learning computing, computer science, and associated subjects, with a particular focus on young people who are from backgrounds that are traditionally under-represented in the field of computing or who experience educational disadvantage.

Young learners at computers in a classroom.

We have been establishing the Centre over the last nine months. In October, I was appointed Director, and in December, we were awarded funding by Google for a one-year research project on culturally relevant computing teaching, following on from a project at the Raspberry Pi Foundation. The Centre’s research team is uniquely positioned, straddling both the University and the Foundation. Our two organisations complement each other very well: the University is one of the highest-ranking universities in the world and renowned for its leading-edge academic research, and the Raspberry Pi Foundation works with schools, educators, and learners globally to pursue its mission to put the power of computing into the hands of young people.

In our research at the Centre, we will make sure that:

  1. We collaborate closely with teachers and schools when implementing and evaluating research projects
  2. We publish research results in a number of different formats, as promptly as we can and without a paywall
  3. We translate research findings into practice across the Foundation’s extensive programmes and with our partners

We are excited to work with a large community of teachers and researchers, and we look forward to meeting you at the launch event.

Stay up to date

At the end of June, we’ll be launching a new website for the Centre at computingeducationresearch.org. This will be the place for you to find out more about our projects and events, and to sign up to our newsletter. For announcements on social media, follow the Raspberry Pi Foundation on Twitter or Linkedin.

The post Join us at the launch event of the Raspberry Pi Computing Education Research Centre appeared first on Raspberry Pi.

299 experiments from young people run on the ISS in Astro Pi Mission Space Lab 2021/22

Par : Sam Duffy

We and our partners at ESA Education are excited to announce that 299 teams of young people who entered Mission Space Lab this year have achieved flight status as part of the 2021/22 European Astro Pi Challenge. This means that these young people’s programs are the first ever to run on the two upgraded Astro Pi units on board the International Space Station (ISS).

Two Astro Pi units on board the International Space Station.

Mission Space Lab gives teams of young people up to age 19 the opportunity to design and conduct their own scientific experiments that run on board the ISS. It’s an eight-month long activity that follows the European school year. The exciting hardware upgrades inspired a record number of young people to send us their Mission Space Lab experiment ideas.

Logo of Mission Space Lab, part of the European Astro Pi Challenge.

Teams who want to take on Mission Space Lab choose between two themes for their experiments, investigating either ‘Life in space’ or ‘Life on Earth’. From this year onwards, thanks to the new Astro Pi hardware, teams can also choose to use new sensors and a Coral machine learning accelerator during their experiment time.

Investigating life in space

Using the Astro Pi units’ sensors, teams can investigate life inside the Columbus module of the ISS. This year, 71 ‘Life in space’ experiments are running on the Astro Pi units. The 71 teams are investigating a wide range of topics: for example, how the Earth’s magnetic field is experienced on the ISS in space, how the environmental conditions that the astronauts experience compare with those on Earth beneath the ISS on its orbit, or whether the conditions in the ISS might be suitable for other lifeforms, such as plants or bacteria.

The mark 2 Astro Pi units spin in microgravity on the International Space Station.

For ‘Life in space’ experiments, teams can collect data about factors such as the colour and intensity of cabin light (using the new colour and luminosity sensor included in the upgraded hardware), astronaut movement in the cabin (using the new PIR sensor), and temperature and humidity (using the Sense HAT add-on board’s standard sensors).

Investigating life on Earth

Using the camera on an Astro Pi unit when it’s positioned to view Earth from a window of the ISS, teams can investigate features on the Earth’s surface. This year, for the first time, teams had the option to use visible-light instead of infrared (IR) photography, thanks to the new Astro Pi cameras.

An Astro Pi unit at a window on board the International Space Station.

228 teams’ ‘Life on Earth’ experiments are running this year. Some teams are using the Astro Pis’ sensors to determine the precise location of the ISS when images are captured, to identify whether the ISS is flying over land or sea, or which country it is passing over. Other teams are using IR photography to examine plant health and the effects of deforestation in different regions. Some teams are using visible-light photography to analyse clouds, calculate the velocity of the ISS, and classify biomes (e.g. desert, forest, grassland, wetland) it is passing over. The new hardware available from this year onward has helped to encourage 144 of the teams to use machine learning techniques in their experiments.

Testing, testing, testing

We received 88% more idea submissions for Mission Space Lab this year compared to last year: during Phase 1, 799 teams sent us their experiment ideas. We invited 502 of the teams to proceed to Phase 2 based on the quality of their ideas. 386 teams wrote their code and submitted computer programs for their experiments during Phase 2 this year. Achieving flight status, and thus progressing to Phase 3 of Mission Space Lab, is really a huge accomplishment for the 299 successful teams.

Three replica Astro Pi units on a wooden shelf.
Three replica Astro Pi units run tests on the Mission Space Lab programs submitted by young people.

For us, Phase 2 involved putting every team’s program through a number of tests to make sure that it follows experiment rules, doesn’t compromise the safety and security of the ISS, and will run without errors on the Astro Pi units. Testing means that April is a very busy time for us in the Astro Pi team every year. We run these tests on a number of exact replicas of the new Astro Pis, including a final test to run every experiment that has passed every test for the full 3 hours allotted to each team. The 299 experiments with flight status will run on board the ISS for over 5 weeks in total during Phase 3, and once they have started running, we can’t rely on astronaut intervention to resolve issues. So we have to make sure that all of the programs will run without any problems.

Part of the South Island (Te Waipounamu) of New Zealand (Aotearoa), photographed from the International Space Station using an Astro Pi unit.
The South Island (Te Waipounamu) of New Zealand (Aotearoa), photographed from the International Space Station using an Astro Pi unit. Click to enlarge.

Thanks to the team at ESA, we are delighted that 67 more Mission Space Lab experiments are running on the ISS this year compared to last year. In fact, teams’ experiments using the Astro Pi units are underway right now!

The 299 teams awarded flight status this year represent 23 countries and 1205 young people, with 32% female participants and an average age of 15. Spain has the most teams with experiments progressing to Phase 3 (38), closely followed by the UK (34), Italy (27), Romania (23), and Greece (22).

Four photographs of regions of the Earth taken on the International Space Station using an Astro Pi unit.
Four photographs of the Earth taken on the International Space Station using an Astro Pi unit. Click to enlarge.

Unfortunately, it isn’t possible to run every Mission Space Lab experiment submitted, as there is only limited time for the Astro Pis to be positioned in the ISS window. We wish we could run every experiment that is submitted, but unfortunately time on the ISS, especially on the nadir window, is limited. Eliminating programs was very difficult because of the high quality of this year’s submissions. Many unsuccessful teams’ programs were eliminated based on very small issues. 87 teams submitted programs this year which did not pass testing and so could not be awarded flight status.

The teams whose experiments are not progressing to Phase 3 should still be very proud to have designed experiments that passed Phase 1, and to have made a Phase 2 submission. We recognise how much work all Mission Space Lab teams have done, and we hope to see you again in next year’s Astro Pi Challenge.

What’s next?

Once the programs for all the experiments have run, we will send the teams the data collected by their experiments for Phase 4. In this final phase of Mission Space Lab, teams analyse their data and write a short report to describe their findings. Based on these reports, the ESA Education and Raspberry Pi Foundation teams will determine the winner of this year’s Mission Space Lab. The winning and highly commended teams will receive special prizes.

Congratulations to all Mission Space Lab teams who’ve achieved flight status! We are really looking forward to reading your reports.

Logo of the European Astro Pi Challenge.

The post 299 experiments from young people run on the ISS in Astro Pi Mission Space Lab 2021/22 appeared first on Raspberry Pi.

3D print your own replica Astro Pi flight case

We’ve put together a new how-to guide for 3D printing and assembling your own Astro Pi unit replica, based on the upgraded units we sent to the International Space Station in December.

Astro Pi MK II hardware.
The new, upgraded Astro Pi units.

The Astro Pi case connects young people to the Astro Pi Challenge

It wasn’t long after the first Raspberry Pi computer was launched that people started creating the first cases for it. Over the years, they’ve designed really useful ones, along with some very stylish ones. Without a doubt, the most useful and stylish one has to be the Astro Pi flight case.

Animation of how the components of the Mark 2 Astro Pi hardware unit fit together.
What’s inside the new units.

This case houses the Astro Pi units, the hardware young people use when they take part in the European Astro Pi Challenge. Designed by the amazing Jon Wells for the very first Astro Pi Challenge, which was part of Tim Peake’s Principia mission to the ISS in 2015, the case has become an iconic part of the Astro Pi journey for young people.

Logo of the European Astro Pi Challenge.

As Jon says: “The design of the original flight case, although functional, formed an emotional connection with the young people who took part in the programme and is an engaging and integral part of the experience of the Astro Pi.”

People love to 3D print Astro Pi cases

Although printing an Astro Pi case is absolutely not essential for participating in the European Astro Pi Challenge, many of the teams of young people who participate in Astro Pi Mission Space Lab, and create experiments to run on the Astro Pi units aboard the ISS, do print Astro Pi cases to house the hardware that we send them for testing their experiments.

An aluminium-encased Astro Pi unit next to a 3D-printed Astro Pi unit replica.
An aluminium Astro Pi case, and a 3D printed case.

When we published the first how-to guide for 3D printing an Astro Pi case and making a working replica of the unit, it was immediately popular. We saw an exciting range of cases being produced. Some people (such as me) tried to make theirs look as similar as possible to the original aluminium Astro Pi flight unit, even using metallic spray paint to complete the effect. Others chose to go for a multicolour model, or even used glow-in-the-dark filament.

So it wasn’t a huge surprise that when we announced that we were sending upgraded Astro Pi units to the ISS — with cases again designed by Jon Wells — we received a flurry of requests for the files needed to 3D print these new cases.

The mark 2 Astro Pi units spin in microgravity on the International Space Station.
The new Astro Pi units are on board the ISS now.

Now that the commissioning of the new Astro Pi units, which arrived on board the International Space Station in December, is complete, we’ve been able to put together an all-new how-to guide to 3D printing your own Mark II Astro Pi case and assembling your own Astro Pi unit replica at home or in the classroom.

The guide also includes step-by-step instructions to completing the internal wiring so you can construct a working Astro Pi unit. We’re provided a custom version of the self-test software that is used on the official Astro Pis, so you can check that everything is operational.

If you’re new to 3D printing, you might like to try one of our BlocksCAD projects and practice printing a simpler design before you move on the the Astro Pi case.

Changes and improvements to the guide

We’ve made some changes to the original CAD designs to make printing the Mark II case parts and assembling a working Astro Pi replica unit as easy as possible. Unlike the STL files for the Mark I case, we’ve kept the upper and lower body components as single parts, rather than splitting each into two thinner halves. 3D printers have continued to improve since we wrote the first how-to guide. Most now have heated beds, which prevent warping, and we’ve successfully printed the Mark II parts on a range of affordable machines.

An Astro Pi case front is being printed on a 3D printer.
Printing an Astro Pi case.

The guide contains lots of hints and tips for getting the best results. As usual with 3D printing, be prepared to make some tweaks for the particular printer that you use.

In addition to the upper and lower case parts, there are also some extra components to print this time: the colour sensor window, the joystick cap, the Raspberry Pi High Quality Camera housing, and the legs that protect the lenses and allow the Astro Pi units on the ISS to be safely placed up against the nadir window.

Four 3D-printed Astro Pi case fronts.
You can choose between four variants of the upper case part.

We’ve included files for four variants of the upper case part (see above). In order to keep costs down, the kits that we send to Astro Pi Mission Space Lab teams have a different PIR sensor to the ones of the proper Astro Pi units. So we’ve produced files for upper case parts that allow that sensor to be fitted. If you’re not taking part in the European Astro Pi Challenge, this also offers a cheaper alternative to creating an Astro Pi replica which still includes the motion detection capability:

A 3D-printed Astro Pi unit replica.

We’ve also provided versions for the upper case part that have smaller holes for the push buttons. So, if you don’t fancy splashing out on the supremely pressable authentic buttons, you can use other colourful alternatives, which typically have a smaller diameter.

A 3D-printed Astro Pi unit replica with legs attached.
The guide includes files for printing the Astro Pi’s protective legs.

Do share photos of your 3D-printed Astro Pi cases with us by tweeting pictures of them to @astro_pi and @RaspberryPi_org.

One week left to help young people make space history with Astro Pi Mission Zero

It’s still not too late for young people to take part in this year’s Astro Pi beginners’ coding activity, Mission Zero, and suggest their ideas for the names for the two new Astro Pi units! Astro Pi Mission Zero is still open until next Friday, 18 March.

Logo of Mission Zero, part of the European Astro Pi Challenge.

The post 3D print your own replica Astro Pi flight case appeared first on Raspberry Pi.

How did we build the new Astro Pi computers for the International Space Station?

Par : Sam Duffy

We are really excited that our two upgraded Astro Pi units have arrived on the International Space Station. Each unit contains the latest model of the Raspberry Pi computer, plus a Raspberry Pi High Quality Camera and a host of sensors on a custom Sense HAT, all housed inside a special flight case designed to keep everything cool and protected. Here is the story of how the Astro Pi units were built:

The upgraded Astro Pi units have been designed and built in collaboration with ESA Education, the European Space Agency’s education programme. The Astro Pis’ purpose is for young people to use them in the European Astro Pi Challenge. The film highlights the units’ exciting new features, such as a machine learning accelerator and new camera, which can capture high-quality images of Earth from space using both visible light and near-infrared light.

Astro Pi MK II hardware plus a Coral machine learning accelerator.
The new Astro Pi unit, with its camera and machine learning accelerator.

There’s an extended team behind the new hardware and software, not just us working at the Raspberry Pi Foundation and the European Space Agency.

“Thanks to our friends at ESA, and all the people who have shared their unique expertise and knowledge with us, […] we’ve managed to take two ordinary Raspberry Pi computers from the production line in Wales and see them end up on the International Space Station. It’s been a real privilege to get to work with such an amazing group of space professionals.”

– Richard Hayler, Senior Programme Manager and lead engineer of the Astro Pi units

The new Astro Pis are all ready to run young peoples’ computer programs as part of the European Astro Pi Challenge. The young people who successfully proposed experiments for the 2021/22 round of Astro Pi Mission Space Lab have just submitted their programs to us for testing. These programs will run the teams’ experiments on the new Astro Pis in May.

Your young people’s code in space

There is still time until 18 March to take part in the 2021/22 round of Astro Pi Mission Zero. Mission Zero is a beginners’ coding activity for all young people up to age 19 in ESA member and associate states. Mission Zero is free, can be completed online in an hour, and lets young people send their unique message to the astronauts on board the ISS.

Logo of Mission Zero, part of the European Astro Pi Challenge.

To take part, participants follow our step-by-step guide to write a simple Python program. Their program will display their message to the astronautsvia the Astro Pi’s LED display (complete with ‘sunglasses’). Parents or educators support the participants by signing up for a mentor code to submit the young people’s programs.

All Mission Zero participants receive a certificate showing the exact time and location of the ISS when their program was run — their moment of space history to keep. And this year only, Mission Zero is extra special: participants can also help name the two new Astro Pi units

The mark 2 Astro Pi units spin in microgravity on the International Space Station.

You can watch ESA astronaut Matthias Maurer unpack and assemble the Astro Pi units in microgravity on board the ISS. It’s so exciting to work with the European Space Agency in order to send young people’s code into space. We hope you and your young people will take part in this year’s Astro Pi Challenge.

PS If you want to build your own replica of the Astro Pi units, we’ve got a treat for you soon. Next week, we’ll share a step-by-step how-to guide, including 3D printing files.

The post How did we build the new Astro Pi computers for the International Space Station? appeared first on Raspberry Pi.

The Roots project: Implementing culturally responsive computing teaching in schools in England

Since last year, we have been investigating culturally relevant pedagogy and culturally responsive teaching in computing education. This is an important part of our research to understand how to make computing accessible to all young people. We are now continuing our work in this area with a new project called Roots, bridging our research team here at the Foundation and the team at the Raspberry Pi Computing Education Research Centre, which we jointly created with the University of Cambridge in its Department of Computer Science and Technology.

Educators and learners in a school in Australia
Three teenage boys do coding at a shared computer during a computer science lesson.

Across both organisations, we’ve got great ambitions for the Centre, and I’m delighted to have been appointed as its Director. It’s a great privilege to lead this work. 

What do we mean by culturally relevant pedagogy?

Culturally relevant pedagogy is a framework for teaching that emphasises the importance of incorporating and valuing all learners’ knowledge, ways of learning, and heritage. It promotes the development of learners’ critical consciousness of the world and encourages them to ask questions about ethics, power, privilege, and social justice. Culturally relevant pedagogy emphasises opportunities to address issues that are important to learners and their communities.

Two learners do physical computing in the primary school classroom.
Two learners do physical computing in the primary school classroom.

Culturally responsive teaching builds on the framework above to identify a range of teaching practices that can be implemented in the classroom. These include:

  • Drawing on learners’ cultural knowledge and experiences to inform the curriculum
  • Providing opportunities for learners to choose personally meaningful projects and express their own cultural identities
  • Exploring issues of social justice and bias

The story so far

The overall objective of our work in this area is to further our understanding of ways to engage underrepresented groups in computing. In 2021, funded by a Special Projects Grant from ACM’s Special Interest Group in Computer Science Education (SIGCSE), we established a working group of teachers and academics who met up over the course of three months to explore and discuss culturally relevant pedagogy. The result was a collaboratively written set of practical guidelines about culturally relevant and responsive teaching for classroom educators.

The video below is an introduction for teachers who may not be familiar with the topic, showing the perspectives of three members of the working group and their students. You can also find other resources that resulted from this first phase of the work, and read our Special Projects Report.

We’re really excited that, having developed the guidelines, we can now focus on how culturally responsive computing teaching can be implemented in English schools through the Roots project, a new, related project supported by funding from Google. This funding continues Google’s commitment to grow the impact of computer science education in schools, which included a £1 million donation to support us and other organisations to develop online courses for teachers.

The next phase of work: Roots

In our new Roots project, we want to learn from practitioners how culturally responsive computing teaching can be implemented in classrooms in England, by supporting teachers to plan activities, and listening carefully to their experiences in school. Our approach is similar to the Research-Practice-Partnership (RPP) approach used extensively in the USA to develop research in computing education; this approach hasn’t yet been used in the UK. In this way, we hope to further develop and improve the guidelines with exemplars and case studies, and to increase our understanding of teachers’ motivations and beliefs with respect to culturally responsive computing teaching.

Woman teacher and female students at a computer
A male teachers and three female students at a computer
Two teenage boys do coding at a shared computer during a computer science lesson while their woman teacher observes them.

The pilot phase of the Roots project starts this month and will run until December 2022. During this phase, we will work with a small group of schools around London, Essex, and Cambridgeshire. Longer-term, we aim to scale up this work across the UK.

The project will be centred around two workshops held in participating teachers’ schools during the first half of the year. In the first workshop, teachers will work together with facilitators from the Foundation and the Raspberry Pi Computing Education Research Centre to discuss culturally responsive computing teaching and how to make use of the guidelines in adapting existing lessons and programmes of study. The second workshop will take place after the teachers have implemented the guidelines in their classroom, and it will be structured around a discussion of the teachers’ experiences and suggestions for iteration of the guidelines. We will also be using a visual research methodology to create a number of videos representing the new knowledge gleaned from all participants’ experiences of the project. We’re looking forward to sharing the results of the project later on in the year. 

Polly Card.
Polly Card
Saman Rizvi.
Saman Rizvi
Katie Vanderpere-Brown.
Katie Vanderpere-Brown

We’re delighted that Dr Polly Card will be leading the work on this project at the Raspberry Pi Computing Education Research Centre, University of Cambridge, together with Saman Rizvi in the Foundation’s research team and Katie Vanderpere-Brown, Assistant Headteacher, Saffron Walden County High School, Essex and Computing Lead of the NCCE London, Hertfordshire and Essex Computing Hub.

More about equity, diversity, and inclusion in computing education

We hold monthly research seminars here at the Foundation, and in the first half of 2021, we invited speakers who focus on a range of topics relating to equity, diversity, and inclusion in computing education.

As well as holding seminars and building a community of interested people around them, we share the insights from speakers and attendees through video recordings of the sessions, blog posts, and the speakers’ presentation slides. We also publish a series of seminar proceedings with referenced chapters written by the speakers.

You can download your copy of the proceedings of the equity, diversity, and inclusion series now.  

The post The Roots project: Implementing culturally responsive computing teaching in schools in England appeared first on Raspberry Pi.

Raspberry Pi computers are speeding to the International Space Station

This morning, our two new Astro Pi units launched into space. Actual, real-life space. The new Astro Pi units each consist of a Raspberry Pi computer with a Raspberry Pi High Quality Camera and a host of sensors, all housed inside a special space-ready case that makes the hardware suitable for the International Space Station (ISS).

Astro Pi MK II hardware.

The journey to space for two special Raspberry Pi computers

Today’s launch is the culmination of a huge piece of work we’ve done for the European Space Agency to get the new Astro Pi units ready to become part of the European Astro Pi Challenge.

Logo of the European Astro Pi Challenge.

After lift-off from Launch Complex 39A at Kennedy Space Center in Florida, the new Astro Pi units are currently travelling on a SpaceX Falcon 9 rocket carrying the Dragon 2 spacecraft, the module atop the rocket. You can watch the launch again here.

SpaceX’s Falcon 9 rocket carrying the Crew Dragon spits fire as it lifts off from Kennedy Space Center in Florida.
A SpaceX rocket is delivering the special Raspberry Pi computers to the ISS today. © SpaceX

Also travelling with our Astro Pi units are food and some Christmas presents for the astronauts on board the ISS, materials for a study of the delivery of cancer drugs; a bioprinter for experiments investigating wound healing; and materials for a study of how detergents work in microgravity.

The Dragon 2 spacecraft will berth with the ISS tomorrow, with NASA astronauts Raja Chari and Tom Marshburn monitoring its arrival. ESA astronaut Matthias Maurer and another colleague will be there to unpack its cargo. You can watch the process of unpacking tomorrow, Wed 22 December, at 8.30am GMT / 9.30am CET. In the new year, Matthias will be switching our Astro Pi units on and getting them ready to run the code written by young people participating in the European Astro Pi Challenge. The new Astro Pi units will replace Astro Pi units Ed and Izzy, which have been on the ISS for 6 years — ever since the very first Astro Pi Challenge with British ESA astronaut Tim Peake in 2015.

The International Space Station.
The International Space Station, where the special Raspberry Pi computers will arrive tomorrow, © ESA–L. Parmitano, CC BY-SA 3.0 IGO

We’re looking forward to seeing the amazing experiments this year’s Astro Pi Mission Space Lab teams will perform on the new hardware, and what they’ll discover about life on Earth and in space. We also can’t wait to see what the young people participating in Astro Pi Mission Zero will name the new Astro Pi units!

Building space-ready Astro Pi units

None of us on the team working on the Astro Pi Challenge here at the Foundation are aerospace engineers. While building the new Astro Pi units, we’ve learned so much.

Animation of how the components of the Mark 2 Astro Pi hardware unit fit together.

To get the Astro Pis ready to be loaded onto the rocket has been a project of more than three years. That’s because, in addition to manufacturing the Astro Pi units, we also had to ensure they pass the necessary safety and certification process. The official name for this is the Safety Gate process. It’s been set up by ESA and NASA to ensure that any items sent to the ISS are safe to operate on board the station.

For the three separate safety panels the Astro Pi units needed to get through, we put the units through different tests and completed various safety reports. The tests included:

  • A vibration test: To make sure the Astro Pi units survive the rigours of the launch, we tested them using the sophisticated rigs at Airbus in Portsmouth. These rigs are capable of simulating the vibrations produced by various different launch vehicles. We needed to test all possible options, because the Astro Pi units didn’t have a confirmed vehicle to travel to the ISS yet.
A vibration test of the new Raspberry Pi-powered Astro Pi units at Airbus in Portsmouth
  • A thermal test: To make sure no harm can possibly come to the crew from the Astro Pi units, we needed to check that the touch temperature of the Astro Pi units’ surface is never above 45°C.
  • A heat test of the new Raspberry Pi-powered Astro Pi units.
  • A test for sharp edges: Each Astro Pi unit also needed to be manually inspected by someone wearing a latex glove who carefully feels the case for sharp edges.
Testing the new Raspberry Pi-powered Astro Pi units for sharp edges using a latex glove.
  • Stringent, military-grade electromagnetic emissions and susceptibility tests: These are required to guarantee that the Astro Pi units won’t interfere with any ISS systems, and that the units themselves are not affected by other equipment on board.
  • EMC test of the new Raspberry Pi-powered Astro Pi units.
  • EMC test of the new Raspberry Pi-powered Astro Pi units.
  • We built two additional Astro Pi units and sent them to NASA so that they could test that plugging the units into the ISS power grid wouldn’t cause a power overload. 

For almost all of these tests, we created custom software to do things like stress the Astro Pi units’ processors, saturate the network links, and generally make the units work as hard as possible. 

To accompany these safety and test reports, we also had to create the Flight Safety Data Package (FSDP), which contains exact technical information about every component of the Astro Pi hardware, and about all the necessary safety controls to qualify the use of certain materials and safely manage operation of the units. The current FSDP paperwork stands at over 700 pages, which thankfully we haven’t had to actually print out!

Young people’s code will run on the new Astro Pi units next year — is yours on board?

All of this work culminated today in the Astro Pis being launched up into space from Cape Canaveral. And we’re doing all this so that more young people can take part in the European Astro Pi Challenge and send messages to the ISS astronauts using code as part of Mission Zero, or write code for new, ambitious experiments to run on the ISS as part of Mission Space Lab.

  • Logo of Mission Space Lab, part of the European Astro Pi Challenge.
  • Logo of Mission Zero, part of the European Astro Pi Challenge.

Young people can take part in Astro Pi Mission Zero right now! Mission Zero is a beginners’ coding activity for all young people under the age of 19 in ESA member and associate states. It gives them the chance to write code to show their own message to the astronauts on board the ISS using the Astro Pi units. And this time, Mission Zero participants can also vote to name the new Astro Pi units!

To participate, young people follow our step-by-step instructions to write their Mission Zero code. As an adult supporting a young person on Mission Zero, all you need to do is sign up as a mentor to get them a registration code for their Mission Zero entry. Once your young person’s code has run in space, we’ll send you a special certificate for them showing where the ISS, and the Astro Pi computers, were when their code ran.

Inspire a young person to learn about coding and space science today with Astro Pi Mission Zero!

The post Raspberry Pi computers are speeding to the International Space Station appeared first on Raspberry Pi.

Record numbers of young people have sent us ideas for Astro Pi Mission Space Lab 2021/22

We and our partners ESA Education are delighted to announce that for this year’s Mission Space Lab of the European Astro Pi Challenge, a record number of 800 teams from 23 countries sent us their ideas for experiments to run on board the International Space Station (ISS).

  • Logo of Mission Space Lab, part of the European Astro Pi Challenge.
  • Astro Pi IR on ISS.

This is an incredible 83% increase from last year and means that more than 3100 young people from across Europe and other eligible countries have taken part in Phase 1 of Mission Space Lab.

  • ESA Astronaut Thomas Pesquet with the Astro Pi computers aboard the International Space Station
  • The International Space Station.

Young people’s scientific experiments in space with Mission Space Lab

Every year since 2015, thanks to our yearly Astro Pi Challenge, Mission Space Lab teams of young people have created code for their own scientific experiments to run on the ISS’s two Astro Pi units. These Astro Pi units are Raspberry Pi computers in space-proof cases, with cameras and an array of sensors. In Phase 1 of Mission Space Lab, teams submit their idea for an experiment that uses the Astro Pi hardware to investigate either the environmental conditions inside the Columbus module on the ISS, or life on the Earth’s surface.

A photo of the Maledives taken from the International Space Station by an Astro Pi unit programmed by a Mission Space Lab team.
The Maldives as photographed by a Mission Space Lab team from a previous round

This year, we are sending two upgraded Astro Pi units up into space to the ISS. These consist of the newest model of the Raspberry Pi computer, the newest Raspberry Pi camera, an augmented sensor board and a Coral machine learning accelerator. Young people can vote for the new Astro Pi units’ names by doing the Astro Pi beginners’ coding activity, Mission Zero.

Astro Pi MK II hardware.
The new Astro Pi units

For Mission Space Lab participants, the new hardware opens up a range of options for experiments that were not possible before. Among these are experiments using elements of artificial intelligence such as advanced machine learning, and higher-resolution photography than ever before.

Animation of how the components of the Mark 2 Astro Pi hardware unit fit together.
Inside the new Astro Pi unit

It’s clear that young people are really excited about the new hardware. Not only did we see an overall increase in participating teams, but 49% of the Mission Space Lab experiment ideas that teams sent us involved machine learning.

Mission Space Lab teams are getting ready to write and test their code

We’ve now selected 502 teams for Phase 2 of Mission Space Lab based on the quality of their experiment ideas. Despite the fierce competition, this is 26% more teams than we were able to progress to Phase 2 last year.

All the teams we’ve selected are about to be sent a special Astro Pi hardware kit to help them write the programs for their experiments. These kits include all the components to replicate the new Astro Pi units that will travel to space in December: a Raspberry Pi 4 computer, a Raspberry Pi High Quality Camera, and the same sensors that are on the Astro Pi computers on the ISS. In addition, teams conducting experiments involving machine learning will receive a Coral machine learning accelerator, and teams conducting experiments involving Infrared photography will receive a red optical filter.

  • The Astro Pi kit box that Mission Space Lab participants receive.
  • An opened Astro Pi kit box showing what kit Mission Space Lab participants receive.

Once the teams of young people have received their hardware kits, they’ll be able to familiarise themselves with the Astro Pi sensors and cameras, and then create and test (and re-test!) their code.

Young people’s code will run in space next year

The teams’ deadline for submitting the code for their experiments to us is Thursday 24 February 2022. Once their code has gone through our checks and tests, it will be ready to run on the shiny new Astro Pi units on board the ISS in April or May.

Congratulations to the successful teams, and thank you to everyone who sent us their ideas for Mission Space Lab this year. And a special thank you to all the teachers, educators, club volunteers, and other wonderful people who are acting as Mission Space Lab team mentors this year. You are helping your young people do something remarkable that they will remember for the rest of their lives.

If your team was unsuccessful this time, we’re sorry for the disappointment — please try again next year.

Logo of Mission Zero, part of the European Astro Pi Challenge.

Young people up to age 19 can also take part in Mission Zero, the beginners’ coding activity of the European Astro Pi Challenge, to vote for which European scientist they think we should name the units after. All Mission Zero entries are guaranteed to run on the ISS for 30 seconds!

The post Record numbers of young people have sent us ideas for Astro Pi Mission Space Lab 2021/22 appeared first on Raspberry Pi.

We’re sending Raspberry Pi computers to space for the European Astro Pi Challenge

We’re super excited to announce that the European Astro Pi Challenge is back for another year of amazing space-based coding adventures.

This time we are delighted to tell you that we’re upgrading the Raspberry Pi computers on the International Space Station (ISS) and adding new hardware to expand the range of experiments that young people can run in space!

What’s new with Astro Pi?

The first Astro Pi units were taken up to the ISS by British ESA astronaut Tim Peake in December 2015 as part of the Principia mission. Since then, 54000 young people from 26 countries have written code that has run on these specially augmented Raspberry Pi computers.

Working with our partners at the European Space Agency, we are now upgrading the Astro Pi units to include:

  • Raspberry Pi 4 Model B with 8GB RAM
  • Raspberry Pi High Quality Camera
  • Google Coral machine learning accelerator
  • Colour and luminosity sensor
  • Passive infrared sensor
Astro Pi MK II hardware.
The augmented Raspberry Pi computers we are sending up to the International Space station, in all their glory

The units will continue to have a gyroscope; an accelerometer; a magnetometer; and humidity, temperature, and pressure sensors.

Astro Pi MK II hardware with Coral machine learning accelerator.
The little device on the left is the Google Coral machine learning accelerator

The new hardware makes it possible for teams to design new types of experiments. With the Raspberry Pi High Quality Camera they can take sharper, more detailed images, and, for the first time, teams will be able to get full-colour photos of the beauty of Earth from space. This will also enable teams to investigate plant health thanks to the higher-quality optical filter in conjunction with the IR-sensitive camera. Using the Coral machine learning accelerator, teams will also be able to develop machine learning models that allow high-speed, real-time processing.

Getting into space

The Astro Pi units, in their space-ready cases of machined aluminium, will travel to the ISS in December on the SpaceX Dragon Cargo rocket, launching from Kennedy Space Center. Once the resupply vehicle docks with the ISS, the units will be unpacked and set up ready to run Astro Pi participants’ code in 2022.

Getting the units ready for launch has been a significant effort from lots of people. Once we worked with our friends at ESA to agree on the new features and hardware, we commissioned the design of the new case from Jon Wells. Manufacturing was made significantly more challenging by the pandemic, not least because we weren’t able to attend the factory and had to interact over video calls.

ESA astronaut Samantha Cristoforetti aboard the ISS. Credit: ESA

Once we had the case and hardware ready, we could take on the huge battery of tests that are required before any equipment can be used on the ISS. These included the vibration test, to ensure that the Astro Pi units would survive the rigours of the launch; thermal testing, to make sure that units wouldn’t get too hot to touch; and stringent, military-grade electromagnetic emissions and susceptibility tests to guarantee that the Astro Pi computers wouldn’t interfere with any ISS systems, and would not themselves be affected by other equipment that is on board the space station.

Huge thanks to Jon Wells and our collaborators at Airbus, Google, MidOpt, and Shearline Precision Engineering for everything they’ve done to get us to the point where we were able to ship the new Astro Pi units to the Aerospace Logistics Technology Engineering Company (ALTEC) in Italy for final preparations before their launch.

There are two Astro Pi missions for young people to choose from: Mission Zero and Mission Space Lab. Young people can participate in one or both of the missions! Participation is free and open for young people up to age 19 in ESA member states (exceptions listed on the Astro Pi website).

  • Two teenage girls do coding during a computer science lesson.
  • A teacher and a student work on a coding task at a laptop.

Mission Zero

In Mission Zero, young people write a simple Python program that takes a sensor reading and displays a message on the LED screen. This year, participation in Mission Zero also gives young people the opportunity to vote for the names of the two new computers. Mission Zero can be completed in around an hour and is open to anyone up to age 19. (Young children may need support with typing to do the coding activity.) Every eligible entry is guaranteed to run on board the ISS, and participants will receive an official certificate with the exact time and location of the ISS when their program ran.

Mission Zero opens today and runs until 18 March 2022.

Mission Space Lab

Mission Space Lab is for teams of young people who want to run their own scientific experiments on the Astro Pi units aboard the ISS. It runs over eight months in four phases, from idea registration to data analysis. 

Have a look at the winning teams from last year for amazing examples of what teams have investigated in the past. But remember — the new Astro Pi computers offer exciting new ways of investigating life in space and on Earth. We can’t wait to see what ideas participants come up with this year. 

To start, Mission Space Lab team mentors just need to send us their team’s experiment idea by 29 October 2021.

Follow our progress

You can keep updated with all of the latest Astro Pi news, including the build-up to the rocket launch in December, by following the Astro Pi Twitter account.

The post We’re sending Raspberry Pi computers to space for the European Astro Pi Challenge appeared first on Raspberry Pi.

Introducing the Raspberry Pi Computing Education Research Centre

I am delighted to announce the creation of the Raspberry Pi Computing Education Research Centre at the University of Cambridge.

University of Cambridge logo

With computers and digital technologies increasingly shaping all of our lives, it’s more important than ever that every young person, whatever their background or circumstances, has meaningful opportunities to learn about how computers work and how to create with them. That’s our mission at the Raspberry Pi Foundation.

Woman computing teacher and young female student at a laptop.
The Raspberry Pi Computing Education Research Centre will work with educators to translate its research into practice and effect positive change in learners’ lives.

Why research matters

Compared to subjects like mathematics, computing is a relatively new field and, while there are enduring principles and concepts, it’s a subject that’s changing all the time as the pace of innovation accelerates. If we’re honest, we just don’t know enough about what works in computing education, and there isn’t nearly enough investment in high-quality research.

Two teenagers sit at laptops in a computing classroom.
We need research to find the best ways of teaching young people how computers work and how to create with them.

That’s why research and evidence has always been a priority for the Raspberry Pi Foundation, from rigorously evaluating our own programmes and running structured experiments to test what works in areas like gender balance in computing, to providing a platform for the world’s best computing education researchers to share their findings through our seminar series. 

Through our research activities we hope to make a contribution to the field of computing education and, as an operating foundation working with tens of thousands of educators and millions of learners every year, we’re uniquely well-placed to translate that research into practice. You can read more about our research work here.

The Raspberry Pi Computing Education Research Centre 

The new Research Centre is a joint initiative between the University of Cambridge and the Raspberry Pi Foundation, and builds on our longstanding partnership with the Department of Computer Science and Technology. That partnership goes all the way back to 2008, to the creation of the Raspberry Pi Foundation and the invention of the Raspberry Pi computer. More recently, we have collaborated on Isaac Computer Science, an online platform that is already being used by more than 2500 teachers and 36,000 students of A level Computer Science in England, and that we will shortly expand to cover GCSE content.

Woman computing teacher and female students at a computer.
Computers and digital technologies shape our lives and society — how do we make sure young people have the skills to use them to solve problems?

Through the Raspberry Pi Computing Education Research Centre, we want to increase understanding of what works in teaching and learning computing, with a particular focus on young people who come from backgrounds that are traditionally underrepresented in the field of computing or who experience educational disadvantage.

The Research Centre will combine expertise from both institutions, undertaking rigorous original research and working directly with teachers and other educators to translate that research into practice and effect positive change in young peoples’ lives.

The scope will be computing education — the teaching and learning of computing, computer science, digital making, and wider digital skills — for school-aged young people in primary and secondary education, colleges, and non-formal settings.

We’re starting with three broad themes: 

  • Computing curricula, pedagogy, and assessment, including teacher professional development and the learning and teaching process
  • The role of non-formal learning in computing and digital making learning, including self-directed learning and extra-curricular programmes
  • Understanding and removing the barriers to computing education, including the factors that stand in the way of young people’s engagement and progression in computing education

While we’re based in the UK and expect to run a number of research projects here, we are eager to establish collaborations with universities and researchers in other countries, including the USA and India. 

Get involved

We’re really excited about this next chapter in our research work, and doubly excited to be working with the brilliant team at the Department of Computer Science and Technology. 

If you’d like to find out more or get involved in supporting the new Computing Education Research Centre, please subscribe to our research newsletter or email research@raspberrypi.org.

You can also join our free monthly research seminars.

The post Introducing the Raspberry Pi Computing Education Research Centre appeared first on Raspberry Pi.

Amazing science from the winners of Astro Pi Mission Space Lab 2020/21

The Raspberry Pi Foundation and ESA Education are excited to announce the winners and highly commended Mission Space Lab teams of the 2020/21 European Astro Pi Challenge!

ESA Astronaut Thomas Pesquet with the Astro Pi computers aboard the International Space Station
ESA Astronaut Thomas Pesquet floating aboard the International Space Station with the two Astro Pi computers

In Mission Space Lab, teams of young people aged up to 19 create scientific experiments that run on the International Space Station’s two Astro Pi computers — space-hardened Raspberry Pis with cameras and an array of sensors.

  • Logo of Mission Space Lab, part of the European Astro Pi Challenge
  • Astro Pi IR on ISS

In the final phase of Mission Space Lab, teams analyse the data captured during their experiment’s three-hour runtime on the ISS and write a short report describing their experiment’s hypothesis, methods, results, and conclusions.

The Maldives shown from space by an Astro Pi computer on the International Space Station
The Maldives as captured by the Mechabot team

You can read the best reports below! From 154 final reports, the Astro Pi team has now chosen 10 winners and 5 highly commended teams that have each demonstrated great scientific merit and innovative use of the Astro Pi hardware.

Our winning teams are…

Zeus from Tudor Vianu National College of Computer Science in Romania, who used photos of Earth captured by the Astro Pi’s camera, historical data sets, and machine learning to develop a weather forecast system that predicts meteorological phenomena on Earth.

Mag-AZ from Escola Secundária Domingos Rebelo in Portugal, who attempted to create an algorithm that could calculate the location of the magnetic poles of any planet or star by using the Astro Pi’s sensors to map Earth’s magnetic fields.

Lake Balkhash in Kazakhstan shown from space by an Astro Pi computer on the International Space Station
Lake Balkhash in Kazakhstan as captured by the Jupiter team

Atlantes from Niubit Coding Club in Spain, who used a sonification process to convert data captured by the Astro Pi’s sensors into music, inspired by Commander Chris Hadfield’s performance of Space Oddity on the ISS in 2013. You can see more about their experiment here.

Mateii from Saint Sava National College in Romania, who investigated the potential growth of Aspergillus and Penicillium mold on the ISS in comparison to on Earth using a simulation model and Astro Pi sensor readings taken inside the Columbus module.

The River Nile in Egypt seen by an Astro Pi computer on the International Space Station
The river Nile in Egypt as captured by the Mechabot team

Juno from Institut d’Altafulla in Spain, who attempted to determine how much heat the astronauts aboard the ISS experience by using temperature, pressure, and humidity data captured by the Astro Pi’s sensors together with psychrometric calculations.

Albedo from Lycée Albert Camus in France, who investigated albedo on Earth, using photos captured by the Astro Pi’s camera to classify cloud, land, and sea coverage, and analysing their corresponding albedo values.

The river Nile in Sudan shown from space by an Astro Pi computer on the International Space Station
The river Nile in Sudan as captured by the Spacepi2 team

SpaceRad from Centrum Nauki Keplera – Planetarium Wenus in Poland, who also investigated albedo (the proportion of light or radiation that is reflected by a surface) on Earth to evaluate the efficacy of using solar farms to combat climate change.

Magtrix from The Leys School in the United Kingdom, who analysed whether geographical features of Earth such as mountains affect the planet’s magnetic field using the Astro Pi’s magnetometer, GPS data, and photos of Earth captured by the Astro Pi’s camera.

Newfoundland and Labrador shown from space by an Astro Pi computer on the International Space Station
Newfoundland and Labrador as captured by the SpaceRad team

Mechabot from Robone Robotics Club in Germany, who investigated how the Earth’s magnetic field correlates with its climate, and how this affects near-Earth objects’ behaviour in low-Earth orbit.

Spacepi2 from Zanneio Model High School in Greece, who investigated urbanisation on Earth by comparing photos captured by the Astro Pi’s camera with historical data using an automated photo classification program they created and NDVI analysis.

Sakhalin Oblast in Russia shown from space by an Astro Pi computer on the International Space Station
Sakhalin Oblast in Russia as captured by the Liontech team

Highly commended teams

Bergson from Lycée Henri-Bergson Paris in France, who built an AI model predicting nitrogen dioxide pollution levels on Earth using NDVI analysis of photos taken by the Astro Pi’s camera.

The Tiwi Islands off the coast of Northern Australia shown from space by an Astro Pi computer on the International Space Station
The Tiwi Islands off the coast of Northern Australia as captured by the Magtrix team

LionTech from Mihai Eminescu National College, Oradea in Romania, who attempted to measure the velocity of the ISS in orbit, and also created an algorithm to detect smoke, pollution, and types of cloud coverage in the images they captured using the Astro Pi’s camera.

RosSpace from Ceo Boecillo in Spain, who are the third team in our list to have investigated Earth’s albedo levels in relation to global warming using photo analysis. A popular theme this year!

The Amur River and Sea of Oghotsk in Eastern Russia shown from space by an Astro Pi computer on the International Space Station
The Amur river and the Sea of Oghotsk (right) in Eastern Russia as captured by the Zeus team

Jupiter from Institut d’Altafulla in Spain, who looked at variations in the current surface area of water bodies on Earth compared to historical records as an indicator of climate change.

And a special mention for:

Ultrafly from Ultrafly Coding Club in Canada, who were the youngest team to make the highly commended list this year, with an average age of 8! Their experiment explored whether the environmental variables on the ISS created allergy-friendly living conditions for the astronauts on board.

The prize? A special webinar with ESA Astronaut Luca Parmitano

Every Astro Pi team that reached Phase 2 of Mission Space Lab by having their experiment idea accepted this year will receive participation certificates recognising their achievement, and the winners and highly commended teams will receive special certificates and an additional prize.

The prize for this year’s winners and highly commended teams is the chance to pose their questions to ESA astronaut Luca Parmitano during a webinar in September! We’ll shortly email the teams’ mentors the instructions for submitting their teams’ questions to Luca.

ESA Astronaut Luca Parmitano floating aboard the ISS with two Astro Pi computers
ESA Astronaut Luca Parmitano floating aboard the ISS with the two Astro Pi computers

This Q&A event for the finalists will conclude this year’s European Astro Pi Challenge. It’s been an incredible year for the Challenge, with 15756 young people from 23 countries participating in Mission Zero or Mission Space Lab.

Everyone on the Raspberry Pi and ESA Education teams congratulates this year’s participants for their efforts, especially given the obstacles many teams had to overcome due to the coronavirus pandemic.

Thank you and congratulations to everyone who has taken part — we hope you found it as fun and inspiring as we did!

We can’t wait to welcome you back for the next European Astro Pi Challenge!

While this year’s Challenge is coming to an end, the European Astro Pi Challenge will return with both Mission Zero and Mission Space Lab in September!

Logo of the European Astro Pi Challenge

We invite all teachers, educators, club leaders, and young people who love coding and space science to follow our updates on astro-pi.org and the Astro Pi Twitter account to make sure you don’t miss any announcements.

The post Amazing science from the winners of Astro Pi Mission Space Lab 2020/21 appeared first on Raspberry Pi.

Nearly 15,000 young people ran their code on the ISS for Astro Pi 2020/21!

Our team here at the Raspberry Pi Foundation, in collaboration with ESA Education, is excited to announce the successful deployment of young people’s programs aboard the International Space Station (ISS) for the European Astro Pi Challenge 2020/21!

Logo of the European Astro Pi Challenge.

Across both Astro Pi missions — Mission Zero and Mission Space Lab — 14,993 participants created an amazing 9408 programs, which have now run aboard the ISS’s two special Raspberry Pi computers: the Astro Pis Izzy and Ed. Congratulations to all for their achievements during this challenging year!

ESA astronaut Thomas Pesquet congratulates all of this year’s Astro Pi teams

Mission Zero: Popular as ever

This year, 14,054 young people from 24 countries successfully took part in Mission Zero: the Astro Pi computers aboard the ISS ran their programs for 30 seconds each.

In Mission Zero, young people write programs to measure the humidity inside the ISS Columbus module using the Sense HAT add-on of the Astro Pi, and then use the Sense HAT’s LED matrix to display the measurement together with their very own message to the astronauts. This year that included ESA astronaut Thomas Pesquet, who oversaw the deployment of both the Mission Zero and Mission Space Lab programs.

This year’s Mission Zero programs running aboard the ISS

To make it easier for young people to participate in Mission Zero while school closures and restrictions on face-to-face meetings were in place to help stop the spread of coronavirus, we updated the Mission Zero rules this year: for the first time, young people could take part by themselves as well as in teams. As we had hoped, this new option proved hugely popular, with 6308 entries coming from individual participants. Despite the challenging circumstances, this year’s number of Mission Zero participants was just 5% lower than last year’s — a sure sign of how much young people love Astro Pi!

Mission Space Lab: Investigating life in space and on Earth

In addition to the Mission Zero participants, 232 teams of in total 939 students and young people are currently in their final phase of Astro Pi Mission Space Lab. Over the last month, each team had the program for their scientific experiment run on either Astro Pi Ed or Astro Pi Izzy for three hours each.

Compilation of photographs of Earth, taken by Astro Pi Izzy aboard the ISS.
Photographs of Earth, taken by Astro Pi Izzy aboard the ISS

Teams conducting ‘Life on Earth’ experiments used Astro Pi Izzy’s near-infrared camera to capture images of the planet’s surface. Their experiments include predicting weather patterns by analysing cloud formations, assessing the impact of climate change by investigating reductions in vegetation cover over time using NDVI, and studying variations in the Earth’s magnetic field.

Teams conducting ‘Life in space’ experiments used Astro Pi Ed’s sensors to investigate life inside the ISS Columbus module. Their experiments include measuring the direction and force of gravity inside the Space Station, analysing the air quality onboard, and calculating the position and direction of the Space Station in orbit.

All Mission Space Lab teams have now received their data back from the ISS so they can analyse it and summarise their findings in their final scientific reports. To grant teams enough time to complete their reports while social distancing measures may be in place, we have extended the submission deadline to 12 pm (noon) BST on Monday 28 June 2021!

It’s cosy inside the ISS!

Despite its relatively large size of 109 metres, the ISS only has enough sleeping pods for seven astronauts. However, sometimes there can be more than seven astronauts onboard: usually when one group prepares to leave as another arrives. Recently, a whole eleven astronauts were aboard the ISS, which meant that they had to get creative about where to settle down for sleep.

For Ed and Izzy, our Astro Pi computers, a large crowd such as this can cause some complications! For one thing, ‘crew bumping’ is more likely, which is when the USB cable connecting an Astro Pi to power can become accidentally unplugged because an astronaut collides with it in the small space of the Columbus module. And this time, the snug sleeping situation made one of the crew members request permission to cover Astro Pi Ed’s LED display during the ‘night’! Why? The astronaut was ‘bedding down’ directly opposite Ed, and the light from the display was making sleep difficult! That just goes to show that, even in space, it’s really best to avoid bright light if you need a good night’s sleep.

ESA Astronaut Thomas Pesquet with the Astro Pi computers onboard the ISS.
ESA astronaut Thomas Pesquet with the Astro Pi computers aboard the ISS

Who will win Mission Space Lab 2020/21?

We and our collaborators at ESA Education have appointed a jury of experts to judge all the Mission Space Lab Phase 4 final reports and select the 10 teams with the best reports as the winners of the 2020/21 round of Mission Space Lab. Each of the 10 winning teams will receive a special prize: an invitation to a webinar with an ESA astronaut where they can directly ask them their questions about life in space!

Congratulations again to all the teams that have taken part in the European Astro Pi Challenge this year. Mission Space Lab teams, we can’t wait to read your reports!

The post Nearly 15,000 young people ran their code on the ISS for Astro Pi 2020/21! appeared first on Raspberry Pi.

214 teams granted Flight Status for Astro Pi Mission Space Lab 2020/21!

The Raspberry Pi Foundation and ESA Education are excited to announce that 214 teams participating in Mission Space Lab of this year’s European Astro Pi Challenge have achieved Flight Status. That means they will have their computer programs run on the International Space Station (ISS) later this month!

ESA Astronaut Thomas Pesquet with the Astro Pi computers onboard the ISS.
ESA Astronaut Thomas Pesquet with the Astro Pi computers onboard the ISS

Mission Space Lab gives teams of students and young people up to 19 years of age the amazing opportunity to conduct scientific experiments aboard the ISS, by writing code for the Astro Pi computers — Raspberry Pi computers augmented with Sense HATs. Teams can choose between two themes for their experiments, investigating either life in space or life on Earth.

Life in space

For ‘Life in space’ experiments, teams use the Astro Pi computer known as Ed to investigate life inside the Columbus module of the ISS. For example, past teams have:

  • Used the Astro Pi’s accelerometer sensor to compare the motion of the ISS during normal flight compared to its motion during course corrections and reboost manoeuvres
  • Investigated whether influenza is transmissible on a spacecraft such as the ISS
  • Monitored pressure inside the Columbus module to be able to warn the astronauts on board of space debris or micrometeoroids colliding with the station
  • And much more
Compilation of photographs of Earth, taken by Astro Pi Izzy aboard the ISS.
Compilation of photographs of Earth, taken by Astro Pi Izzy aboard the ISS

Life on Earth

In ‘Life on Earth’ experiments, teams investigate life on our home planet’s surface using the Astro Pi computer known as Izzy. Izzy’s near-infrared camera (with a blue optical filter) faces out of a window in the ISS and is pointed at Earth. For example, past teams have:

  • Investigated variations in Earth’s magnetic field
  • Used machine learning to identify geographical areas that had recently suffered from wildfires
  • Studied climate change based on coastline erosion over the past 30 years
  • And much besides

Phase 1 and 2 of Mission Space Lab

In Phase 1 of Mission Space Lab, teams only have to submit an experiment idea. Our team then judges the teams’ ideas based on their originality, feasibility, and use of hardware. This year, 426 teams submitted experiment ideas, with 396 progressing to Phase 2.

Timeline of Mission Space Lab in 2020/2021, part of the European Astro Pi Challenge.
Timeline of Mission Space Lab in 2020/21 — click to enlarge

At the beginning of Phase 2 of the challenge, we send our special Astro Pi kits to the teams to help them write and test their programs. The kits contain hardware that is similar to the Astro Pi computers in space, including a Raspberry Pi 3 Model B, Raspberry Pi Sense HAT, and Raspberry Pi Camera Modules (V2 and NoIR).

Astro Pi kit box.

Mission Space Lab teams then write the programs for their experiments in Python. Once teams are happy with their programs, have tested them on their Astro Pi kits, and submitted them to us for judging, we run a series of tests on them to ensure that they follow experiment rules and can run without errors on the ISS. The experiments that meet the relevant criteria are then awarded Flight Status.

Phase 3: Flight Status achieved

The 214 teams awarded flight status this year represent 21 countries and 862 young people, with 30% female participants. 137 teams with ‘Life on Earth’ experiments and 77 teams with ‘Life in space’ experiments have successfully made it through to Phase 3.

Spain has the most teams progressing to the next phase (26), closely followed by the UK (25), Romania (21), France (21) and Greece (18).

In the next few weeks, the teams’ experiments will be deployed to the Astro Pi computers on the ISS, and most of them will run overseen by ESA Astronaut Thomas Pesquet, who is going to fly to the ISS on 22 April on his new mission, Alpha.

In the final phase, we’ll send the teams the data their experiments collect, to analyse and write short reports about their findings. Based on these reports, we and the ESA Education experts will determine the winner of this year’s Mission Space Lab. The winning and highly commended teams will receive special prizes. Last year’s outstanding teams got to take part in a Q&A with ESA astronaut Luca Parmitano!

Well done to everyone who has participated, and congratulations to all the successful teams. We are really looking forward to reading your reports!

Logo of Mission Space Lab, part of the European Astro Pi Challenge.

The post 214 teams granted Flight Status for Astro Pi Mission Space Lab 2020/21! appeared first on Raspberry Pi.

How young people can run their computer programs in space with Astro Pi

Do you know young people who dream of sending something to space? You can help them make that dream a reality!

We’re calling on educators, club leaders, and parents to inspire young people to develop their digital skills by participating in this year’s European Astro Pi Challenge.

The European Astro Pi Challenge, which we run in collaboration with the European Space Agency, gives young people in 26 countries* the opportunity to write their own computer programs and run them on two special Raspberry Pi units — called Astro Pis! — on board the International Space Station (ISS).

This year’s Astro Pi ambassador is ESA astronaut Thomas Pesquet. Thomas will accompany our Astro Pis on the ISS and oversee young people’s programs while they run.

And the young people need your support to take part in the Astro Pi Challenge!

A group of young people and educators smiling while engaging with a computer

Astro Pi is back big-time!

The Astro Pi Challenge is back and better than ever, with a brand-new website, a cool new look, and the chance for more young people to get involved.

Logo of the European Astro Pi Challenge

During the last challenge, a record 6558 Astro Pi programs from over 17,000 young people ran on the ISS, and we want even more young people to take part in our new 2020/21 challenge.

British ESA astronaut Tim Peake was the ambassador of the first Astro Pi Challenge in 2015.

So whether your children or learners are complete beginners to programming or have experience of Python coding, we’d love for them to take part!

You and your young people have two Astro Pi missions to choose from: Mission Zero and Mission Space Lab.

Mission Zero — for beginners and younger programmers

In Mission Zero, young people write a simple program to take a humidity reading onboard the ISS and communicate it to the astronauts with a personalised message, which will be displayed for 30 seconds.

Logo of Mission Zero, part of the European Astro Pi Challenge

Mission Zero is designed for beginners and younger participants up to 14 years old. Young people can complete Mission Zero online in about an hour following a step-by-step guide. Taking part doesn’t require any previous coding experience or specific hardware.

All Mission Zero participants who follow the simple challenge rules are guaranteed to have their programs run aboard the ISS in 2021.

All you need to do is support the young people to submit their programs!

Mission Zero is a perfect activity for beginners to digital making and Python programming, whether they’re young people at home or in coding clubs, or groups of students or club participants.

We have made some exciting changes to this year’s Mission Zero challenge:

  1. Participants will be measuring humidity on the ISS instead of temperature
  2. For the first time, young people can enter individually, as well as in teams of up to 4 people

You have until 19 March 2021 to support your young people to submit their Mission Zero programs!

Mission Space Lab — for young people with programming experience

In Mission Space Lab, teams of young people design and program a scientific experiment to run for 3 hours onboard the ISS.

Logo of Mission Space Lab, part of the European Astro Pi Challenge

Mission Space Lab is aimed at more experienced or older participants up to 19 years old, and it takes place in 4 phases over the course of 8 months.

Your role in Mission Space Lab is to mentor a team of participants while they design and write a program for a scientific experiment that increases our understanding of either life on Earth or life in space.

The best experiments will be deployed to the ISS, and teams will have the opportunity to analyse their experimental data and report on their results.

You have until 23 October 2020 to register your team and their experiment idea.

To see the kind of experiments young people have run on the ISS, check out our blog post congratulating the Mission Space Lab 2019/20 winners!

Get started with Astro Pi today!

To find out more about taking part in the European Astro Pi Challenge 2020/21, head over to our new and improved astro-pi.org website.

screenshot of Astro Pi home page

There, you’ll find everything you need to get started on sending young people’s computer program to space!


* ESA Member States in 2020: Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, Romania, Spain, Sweden, Switzerland, Latvia, and the United Kingdom. Other participating states: Canada, Latvia, Slovenia, Malta.

The post How young people can run their computer programs in space with Astro Pi appeared first on Raspberry Pi.

Amazing science from the winners of Astro Pi Mission Space Lab 2019–20

The team at Raspberry Pi and our partner ESA Education are pleased to announce the winning and highly commended Mission Space Lab teams of the 2019–20 European Astro Pi Challenge!

Astro Pi Mission Space Lab logo

Mission Space Lab sees teams of young people across Europe design, create, and deploy experiments running on Astro Pi computers aboard the International Space Station. Their final task: analysing the experiments’ results and sending us scientific reports highlighting their methods, results, and conclusions.

One of the Astro Pi computers aboard the International Space Station
One of the Astro Pi computers aboard the International Space Station

The science teams performed was truly impressive, and the reports teams sent us were of outstanding quality. A special round of applause to the teams for making the effort to coordinate writing their reports socially distant!

The Astro Pi jury has now selected the ten winning teams, as well as eight highly commended teams:

And our winners are…

Vidhya’s code from the UK aimed to answer the question of how a compass works on the ISS, using the Astro Pi computer’s magnetometer and data from the World Magnetic Model (WMM).

Unknown from Externato Cooperativo da Benedita, Portugal, aptly investigated whether influenza is transmissible on a spacecraft such as the ISS, using the Astro Pi hardware alongside a deep literature review.

Space Wombats from Institut d’Altafulla, Spain, used normalized difference vegetation index (NDVI) analysis to identify burn scars from forest fires. They even managed to get results over Chernobyl!

Liberté from Catmose College, UK, set out to prove the Coriolis Effect by using Sobel filtering methods to identify the movement and direction of clouds.

Pardubice Pi from SPŠE a VOŠ Pardubice, Czech Republic, found areas of enormous vegetation loss by performing NDVI analysis on images taken from the Astro Pi and comparing this with historic images of the location.

NDVI conversion image by Pardubice Pi team – Astro Pi Mission Space Lab experiment
NDVI conversion image by Pardubice Pi team

Reforesting Entrepreneurs from Canterbury School of Gran Canaria, Spain, want to help solve the climate crisis by using NDVI analysis to identify locations where reforestation is possible.

1G5-Boys from Lycée Raynouard, France, innovatively conducted spectral analysis using Fast Fourier Transforms to study low-frequency vibrations of the ISS.

Cloud4 from Escola Secundária de Maria, Portugal, masterfully used a simplified static model and Fourier Analysis to detect atmospheric gravity waves (AGWs).

Cloud Wizzards from Primary School no. 48, Poland, scanned the sky to determine what percentage of the seas and oceans are covered by clouds.

Aguere Team 1 from IES Marina Cebrián, Spain, probed the behaviour of the magnetic field, acceleration, and temperature on the ISS by investigating disturbances, variations with latitude, and temporal changes.

Highly commended teams

Creative Coders, from the UK, decided to see how much of the Earth’s water is stored in clouds by analysing the pixels of each image of Earth their experiment collected.

Astro Jaslo from I Liceum Ogólnokształcące króla Stanisława Leszczyńskiego w Jaśle, Poland, used Reimann geometry to determine the angle between light from the sun that is perpendicular to the Astro Pi camera, and the line segment from the ISS to Earth’s centre.

Jesto from S.M.S Arduino I.C.Ivrea1, Italy, used a multitude of the Astro Pi computers’ capabilities to study NDVI, magnetic fields, and aerosol mapping.

BLOOMERS from Tudor Vianu National Highschool of Computer Science, Romania, investigated how algae blooms are affected by eutrophication in polluted areas.

AstroLorenzini from Liceo Statale C. Lorenzini, Italy used Kepler’s third law to determine the eccentricity, apogee, perigee, and mean tangential velocity of the ISS.

Photo of Italy, Calabria and Sicilia by AstroLorenzi team — Astro Pi Mission Space Lab experiment
Photo of Italy, Calabria and Sicilia (notice volcano Etna on the top right-hand corner) captured by the AstroLorenzi team

EasyPeasyCoding Verdala FutureAstronauts from Verdala International School & EasyPeasyCoding, Malta, utilised machine learning to differentiate between cloud types.

BHTeamEL from Branksome Hall, Canada, processed images using Y of YCbCr colour mode data to investigate the relationship between cloud type and luminescence.

Space Kludgers from Technology Club of Thrace, STETH, Greece, identified how atmospheric emissions correlate to population density, as well as using NDVI, ECCAD, and SEDAC to analyse the correlation of vegetation health and abundance with anthropogenic emissions.

The teams get a Q&A with astronaut Luca Parmitano

The prize for the winners and highly commended teams is the chance to pose their questions to ESA astronaut Luca Parmitano! The teams have been asked to record a question on video, which Luca will answer during a live stream on 3 September.

ESA astronaut Luca Parmitano aboard the International Space Station
ESA astronaut Luca Parmitano aboard the International Space Station

This Q&A event for the finalists will conclude this year’s European Astro Pi Challenge. Everyone on the Raspberry Pi and ESA Education teams congratulates this year’s participants on all their efforts.

It’s been a phenomenal year for the Astro Pi challenge: team performed some great science, and across Mission Space Lab and Mission Zero, an astronomical 16998 young people took part, from all ESA member states as well as Slovenia, Canada, and Malta.

Congratulations to everyone who took part!

Get excited for your next challenge!

This year’s European Astro Pi Challenge is almost over, and the next edition is just around the corner!

Compilation of photographs of Earth, taken by Astro Pi Izzy aboard the ISS
Compilation of photographs of Earth taken by an Astro Pi computer

So we invite school teachers, educators, students, and all young people who love coding and space science to join us from September onwards.

Follow our updates on astro-pi.org and social media to make sure you don’t miss any announcements. We will see you for next year’s European Astro Pi Challenge!

The post Amazing science from the winners of Astro Pi Mission Space Lab 2019–20 appeared first on Raspberry Pi.

6558 programs from young people have run on the ISS for Astro Pi 2019/20!

The team at the Raspberry Pi Foundation, in collaboration with ESA Education, is excited to announce that all of this year’s successful Astro Pi programs have now run aboard the International Space Station (ISS)!

Record numbers of young people took part in Astro Pi Mission Zero

This year, a record 6350 teams of students and young people from all 25 eligible countries successfully entered Mission Zero, and they had their programs run on the Astro Pi computers on board the ISS for 30 seconds each!

ESA astronaut Chris Cassidy with an Astro Pi computer aboard the ISS

Astronaut Chris Cassidy overseeing the Mission Zero experiments

The Mission Zero teams measured the temperature inside the ISS Columbus module, and used the Astro Pi LED matrix to display the measurement together with a greeting to the astronauts, including Chris Cassidy, who oversaw this year’s experiments.

Mission Space Lab: Investigating life in space and on Earth

In addition, 208 teams of students and young people are currently in the final phase of Astro Pi Mission Space Lab. Over the last few weeks, each of these teams has had their scientific experiment run on either Astro Pi Ed or Astro Pi Izzy for 3 hours each.

Photograph of Earth, taken by Astro Pi computer Izzy

Astro Pi Izzy’s view of Earth

Teams interested in  life on Earth used Astro Pi Izzy’s near-infrared camera to capture images to investigate, for example, vegetation health and the impact of human life on our planet. Using Astro Pi Ed’s sensors, participants investigated life in space, measuring the conditions on the ISS and even mapping the magnetic field of Earth.

Program deployment, but not as we know it

This year, we encountered a problem during the deployment of some experiments investigating life on Earth. When we downloaded the first batch of data from the ISS, we realised that Astro Pi Izzy had an incorrect setting, which resulted in some pictures turning pink. And not only that: the CANADARM was the middle of Izzy’s window view!

The CANADARM from Astro Pi Izzy’s view of Earth

The CANADARM from Astro Pi Izzy’s view of Earth

Needless to say, this would have had a negative impact on many experiments, so we put in a special request to NASA to remove the CANADARM arm and we reset Izzy. This meant that program deployment took longer than normal, but we managed to re-run all experiments and capture some fantastic images!

All Mission Space Lab teams have now received their data back from the ISS to analyse and summarise in their final scientific reports. So that they can write their reports while social distancing measures are in place, we are sharing special guidance and advice on how best to collaborate remotely, and have extended the submission deadline to 3 July 2020.

Who will win Mission Space Lab 2019/20?

The programs teams sent us this year were outstanding in their quality, creativity, and technical skill. A jury of experts appointed by ESA and the Raspberry Pi Foundation will judge all of the Mission Space Lab reports and select the 10 teams with the best reports as the winners of the European Astro Pi Challenge 2019/20. Each of the 10 winning teams will receive a special prize.

Astro Pi Mission Space Lab logo

Congratulations to all the teams that have taken part in Astro Pi Mission Space Lab this year. We hope that you found it as interesting and as fun as we did, we can’t wait to read your reports!

Celebrating your achievements

Every team that participated in Mission Zero or Mission Space Lab this year will receive a special certificate in celebration of their achievements during the European Astro Pi Challenge. The Mission Zero certificates will feature the coordinates of the ISS when your programs were run!

We’d love to see pictures of your certificates hanging in your homes, schools, or clubs, so tag us in your tweets with @astro_pi!

The post 6558 programs from young people have run on the ISS for Astro Pi 2019/20! appeared first on Raspberry Pi.

How to work from home with Raspberry Pi | The Magpi 93

If you find yourself working or learning, or simply socialising from home, Raspberry Pi can help with everything from collaborative productivity to video conferencing. Read more in issue #92 of The MagPi, out now.

01 Install the camera

If you’re using a USB webcam, you can simply insert it into a USB port on Raspberry Pi. If you’re using a Raspberry Pi Camera Module, you’ll need to unpack it, then find the ‘CAMERA’ port on the top of Raspberry Pi – it’s just between the second micro-HDMI port and the 3.5mm AV port. Pinch the shorter sides of the port’s tab with your nails and pull it gently upwards. With Raspberry Pi positioned so the HDMI ports are at the bottom, insert one end of the camera’s ribbon cable into the port so the shiny metal contacts are facing the HDMI port. Hold the cable in place, and gently push the tab back home again.

If the Camera Module doesn’t have the ribbon cable connected, repeat the process for the connector on its underside, making sure the contacts are facing downwards towards the module. Finally, remove the blue plastic film from the camera lens.

02 Enable Camera Module access

Before you can use your Raspberry Pi Camera Module, you need to enable it in Raspbian. If you’re using a USB webcam, you can skip this step. Otherwise, click on the raspberry menu icon in Raspbian, choose Preferences, then click on Raspberry Pi Configuration.

When the tool loads, click on the Interfaces tab, then click on the ‘Enabled’ radio button next to Camera. Click OK, and let Raspberry Pi reboot to load your new settings. If you forget this step, Raspberry Pi won’t be able to communicate with the Camera Module.

03 Set up your microphone

If you’re using a USB webcam, it may come with a microphone built-in; otherwise, you’ll need to connect a USB headset, a USB microphone and separate speakers, or a USB sound card with analogue microphone and speakers to Raspberry Pi. Plug the webcam into one of Raspberry Pi’s USB 2.0 ports, furthest away from the Ethernet connector and marked with black plastic inners.

Right-click on the speaker icon at the top-right of the Raspbian desktop and choose Audio Inputs. Find your microphone or headset in the list, then click it to set it as the default input. If you’re using your TV or monitor’s speakers, you’re done; if you’re using a headset or separate speakers, right-click on the speaker icon and choose your device from the Audio Outputs menu as well.

04 Set access permissions

Click on the Internet icon next to the raspberry menu to load the Chromium web browser. Click in the address box and type hangouts.google.com. When the page loads, click ‘Sign In’ and enter your Google account details; if you don’t already have a Google account, you can sign up for one free of charge.

When you’ve signed in, click Video Call. You’ll be prompted to allow Google Hangouts to access both your microphone and your camera. Click Allow on the prompt that appears. If you Deny access, nobody in the video chat will be able to see or hear you!

05 Invite friends or join a chat

You can invite friends to your video chat by writing their email address in the Invite People box, or copying the link and sending it via another messaging service. They don’t need their own Raspberry Pi to participate – you can use Google Hangouts from a laptop, desktop, smartphone, or tablet. If someone has sent you a link to their video chat, open the message on Raspberry Pi and simply click the link to join automatically.

You can click the microphone or video icons at the bottom of the window to temporarily disable the microphone or camera; click the red handset icon to leave the call. You can click the three dots at the top-right to access more features, including switching the chat to full-screen view and sharing your screen – which will allow guests to see what you’re doing on Raspberry Pi, including any applications or documents you have open.

06 Adjust microphone volume

If your microphone is too quiet, you’ll need to adjust the volume. Click the Terminal icon at the upper-left of the screen, then type alsamixer followed by the ENTER key. This loads an audio mixing tool; when it opens, press F4 to switch to the Capture tab and use the up-arrow and down-arrow keys on the keyboard to increase or decrease the volume. Try small adjustments at first; setting the capture volume too high can cause the audio to ‘clip’, making you harder to hear. When finished, press CTRL+C to exit AlsaMixer, then click the X at the top-right of the Terminal to close it.

Adjust your audio volume settings with the AlsaMixer tool

Work online with your team

Just because you’re not shoulder-to-shoulder with colleagues doesn’t mean you can’t collaborate, thanks to these online tools.

Google Docs

Google Docs is a suite of online productivity tools linked to the Google Drive cloud storage platform, all accessible directly from your browser. Open the browser and go to drive.google.com, then sign in with your Google account – or sign up for a new account if you don’t already have one – for 15GB of free storage plus access to the word processor Google Docs, spreadsheet Google Sheets, presentation tool Google Slides, and more. Connect with colleagues and friends to share files or entire folders, and collaborate within documents with simultaneous multi-user editing, comments, and change suggestions.

Slack

Designed for business, Slack is a text-based instant messaging tool with support for file transfer, rich text, images, video, and more. Slack allows for easy collaboration in Teams, which are then split into multiple channels or rooms – some for casual conversation, others for more focused discussion. If your colleagues or friends already have a Slack team set up, ask them to send you an invite; if not, you can head to app.slack.com and set one up yourself for free.

Discord

Built more for casual use, Discord offers live chat functionality. While the dedicated Discord app includes voice chat support, this is not yet supported on Raspberry Pi – but you can still use text chat by opening the browser, going to discord.com, and choosing the ‘Open Discord in your browser’ option. Choose a username, read and agree to the terms of service, then enter an email address and password to set up your own free Discord server. Alternatively, if you know someone on Discord already, ask them to send you an invitation to access their server.

Firefox Send

If you need to send a document, image, or any other type of file to someone who isn’t on Google Drive, you can use Firefox Send – even if you’re not using the Firefox browser. All files transferred via Firefox Send are encrypted, and can be protected with an optional password, and are automatically deleted after a set number of downloads or length of time. Simply open the browser and go to send.firefox.com; you can send files up to 1GB without an account, or sign up for a free Firefox account to increase the limit to 2.5GB.

GitHub

For programmers, GitHub is a lifesaver. Based around the Git version control system, GitHub lets teams work on a project regardless of distance using repositories of source code and supporting files. Each programmer can have a local copy of the program files, work on them independently, then submit the changes for inclusion in the master copy – complete with the ability to handle conflicting changes. Better still, GitHub offers additional collaboration tools including issue tracking. Open the browser and go to github.com to sign up, or sign in if you have an existing account, and follow the getting started guide on the site.

Read The MagPi for free!

Find more fantastic projects, tutorials, and reviews in The MagPi #93, out now! You can get The MagPi #93 online at our store, or in print from all good newsagents and supermarkets. You can also access The MagPi magazine via our Android and iOS apps.

Don’t forget our super subscription offers, which include a free gift of a Raspberry Pi Zero W when you subscribe for twelve months.

And, as with all our Raspberry Pi Press publications, you can download the free PDF from our website.

The post How to work from home with Raspberry Pi | The Magpi 93 appeared first on Raspberry Pi.

Cambridge Computing Education Research Symposium – recap of our online event

On Wednesday, we hosted the first-ever Cambridge Computing Education Research Symposium online. Research in computing education, particularly in school and for young people, is a young field compared to maths and science education, and we do not have much in terms of theoretical foundations. It is not a field that has received a lot of funding, so we cannot yet look to large-scale, longitudinal, empirical studies for evidence. Therefore, further research on how best to teach, learn, and assess computing is desperately needed. We also need to investigate ways of inspiring and motivating all young people in an area which is increasingly important for their future.

That’s why at the Raspberry Pi Foundationwe have made research a key part of our new strategy, and that’s why we worked with the University of Cambridge to hold this event.

Moving the symposium online

This was to be our first large-scale research event, held jointly with the University of Cambridge Department of Computer Science and Technology. Of course, current circumstances made it necessary for us to turn the symposium from a face-to-face into an online event at short notice.

Screengrab from the Cambridge Computing Education Research Symposium 2020 online event

An enthusiastic team took on the challenge, and we were delighted with how well the way the day went! You can see what participants shared throughout the day on Twitter.

Keynote presentation

Our keynote speaker was Dr Natalie Rusk of MIT and the Scratch Foundation, who shared her passion for digital creativity using Scratch.

Dr Natalie Rusk from the MIT Media Lab

We were excited to see images from early versions of Scratch and how it had developed over the years. Plus, Natalie revealed the cat blocks that were available on 1 April only — I had completely forgotten the day of the symposium was April Fools’ Day! The focus of Natalie’s presentation was on creativity, invention, tinkering, and the development of ideas over time, and she explored case studies of two ‘Scratchers’ who took a very different approach to working in the Scratch community on projects. The talk was well received by all.

Screengrab from the Cambridge Computing Education Research Symposium 2020 online event

Paper presentations

We heard from researchers from a range of institutions on topics under these themes:

  • Working with teachers on computing education research
  • Assessment tools and techniques
  • Perceptions and attitudes about computing
  • Theoretical frameworks used for computing education

Highlights for me were Ethel Tshukudu’s analysis of the way students transfer from one programming language to another, in which she draws on semantic transfer theory; and Paul Curzon’s application of Karl Maton’s semantic wave theory (taken from linguistics) to computing education.

The symposium’s focus was computing for young people, and much of the research presented was directly grounded in work with teachers and students in learning situations. Lynne Blair shared an interesting study highlighting female participation in A level computer science classes, which found the feeling of a lack of belonging among young women, a finding that echoes existing research around computing education and gender. Fenia Aivaloglou from the University of Leiden, Netherlands, considered the barriers faced by learners and teachers in extra-curricular code clubs, and Alison Twiner and Jo Shillingworth from the University of Cambridge shared a study on engaging young people in work-related computing projects.

We also heard how tools for supporting learners are developing, for example machine learning techniques to process natural language answers to questions on the free online learning platforms Isaac Computer Science and Isaac Physics.

Poster presentations

For the poster sessions, we divided into separate sessions so that the poster presenters could display and discuss their posters with a smaller group of people. This enabled more in-depth discussion about the topic being presented, which participants appreciated at this large online event. The 11 posters covered a wide range of topics from data visualisations in robotics to data-driven dance.

Screengrab from the Cambridge Computing Education Research Symposium 2020 online event

We showcased some of our own work on progression mapping with learning graphs for the NCCE Resource Repository; the Isaac Computer Science A level content platform; and our research into online learning with our free online courses for teachers.

Running an online symposium — what is it like?

From having successfully hosted this event online, we learned many lessons that we want to put into practice in future online events being offered by the Raspberry Pi Foundation.

There’s a plethora of tools available, and they all have their pros and cons (we used Google Meet). It’s my view that the tool is less important than the preparation needed for a large-scale online event, which is significant! The organising team hosted technical run-throughs with all presenters in the two days before the event, and instigated a ‘green room’ for all presenters to check their setups again five to ten minutes before their speaking slot. This helped to avoid a whole myriad of potential technical difficulties.

Screengrab from the Cambridge Computing Education Research Symposium 2020 online event

I’m so grateful to the great team at the Raspberry Pi Foundation, who worked behind the scenes all day to make sure that the participants and presenters got the most out of the event!

Stay in touch!

  • On the Research Symposium web page, you can now download the symposium’s abstract booklet. We will shortly be sharing recordings of the symposium’s presentations and files of slides and posters there as well.
  • When we moved the symposium online, we postponed two pre-symposium events: a workshop on gender balance, and a workshop on research-to-practice; we’re hoping to hold these as in-person events in the autumn.
  • Meanwhile, we are planning a series of online seminars, set to start on Tuesday 5 May at 17:00 BST and continue throughout the summer at two-week intervals.

If you’re interested in receiving a regular update about these and other research activities of ours, sign up to our newsletter.

We look forward to building a community of researchers and to sharing more of our work with you over the coming years.

The post Cambridge Computing Education Research Symposium – recap of our online event appeared first on Raspberry Pi.

Raspberry Pi vs antibiotic resistance: microbiology imaging with open source hardware

Par : Helen Lynn

The Edwards Lab at the University of Reading has developed a flexible, low-cost, open source lab robot for capturing images of microbiology samples with a Raspberry Pi camera module. It’s called POLIR, for Raspberry Pi camera Open-source Laboratory Imaging Robot. Here’s a timelapse video of them assembling it.

Measuring antibiotic resistance with colour-changing dye

The robot is useful for all kinds of microbiology imaging, but at the moment the lab is using it to measure antimicrobial resistance in bacteria. They’re doing this by detecting the colour change in a dye called resazurin, which changes from blue to pink in the presence of metabolically active cells: if bacteria incubated with antibiotics grow, their metabolic activity causes the dye to turn pink. However, if the antibiotics stop or impede the growth of the bacteria, their lower levels of metabolic activity will cause less colour change, or none at all. In the photo below, the colourful microtitre plate holds bacterial samples with and without resistance to the antibiotics against which they’re being tested.

POLIR, an open source 3D printer-based Raspberry Pi lab imaging robot

An imaging system based on 3D-printer designs

The researchers adapted existing open source 3D printer designs and used v-slot aluminium extrusion (this stuff) with custom 3D-printed joints to make a frame. Instead of a printer extrusion head, a Raspberry Pi and camera module are mounted on the frame. An Arduino running open-source Repetier software controls x-y-z stepper motors to adjust the position of the computer and camera.

Front and top views of POLIR

Open-source OctoPrint software controls the camera position by supplying scripts from the Raspberry Pi to the Arduino. OctoPrint also allows remote access and control, which gives researchers flexibility in when they run experiments and check progress. Images are acquired using a Python script configured with the appropriate settings (eg image exposure), and are stored on the Raspberry Pi’s SD card. From there, they can be accessed via FTP.

More flexibility, lower cost

Off-the-shelf lab automation systems are extremely expensive and remain out of the reach of most research groups. POLIR cost just £600.

The system has a number of advantages over higher-cost off-the-shelf imaging systems. One is its flexibility: the robot can image a range of sample formats, including agar plates like those in the video above, microtitre plates like the one in the first photograph, and microfluidic “lab-on-a-comb” devices. A comb looks much like a small, narrow rectangle of clear plastic with striations running down its length; each striation is a microcapillary with capacity for a 1μl sample, and each comb has ten microcapillaries. These microfluidic devices let scientists run experiments on a large number of samples at once, while using a minimum of space on a lab bench, in an incubator, or in an imaging robot like POLIR.

POLIR accommodates 2160 individual capillaries and a 96 well plate, with room to spare

High spatial and temporal resolution

For lab-on-a-comb images, POLIR gives the Reading team four times the spatial resolution they get with a static camera. The moveable Raspberry Pi camera with a short focus yields images with 6 pixels per capillary, compared to 1.5 pixels per capillary using a $700 static Canon camera with a macro lens.

Because POLIR is automated, it brings higher temporal resolution within reach, too. A non-automated system, by contrast, can only be used for timelapse imaging if a researcher repeatedly intervenes at fixed time intervals. Capturing kinetic data with timelapse imaging is valuable because it can be significant if different samples reach the same endpoint but at different rates, and because some dyes can give a transient signal that would be missed by an endpoint measurement alone.

Dr Alexander Edwards of the University of Reading comments:

We built the robot with a simple purpose, to make antimicrobial resistance testing more robust without resorting to expensive and highly specialised lab equipment […] The beauty of the POLIR kit is that it’s based on open source designs and we have likewise published our own designs and modifications, allowing everyone and anyone to benefit from the original design and the modifications in other contexts. We believe that open source hardware is a game changer that will revolutionise microbiological and other life science lab work by increasing data production whilst reducing hands-on labour time in the lab.

You can find POLIR on GitLab here. You can also read more, and browse more figures, in the team’s open-access paper, Exploiting open source 3D printer architecture for laboratory robotics to automate high-throughput time-lapse imaging for analytical microbiology.

The post Raspberry Pi vs antibiotic resistance: microbiology imaging with open source hardware appeared first on Raspberry Pi.

Growth Monitor pi: an open monitoring system for plant science

Par : Helen Lynn

Plant scientists and agronomists use growth chambers to provide consistent growing conditions for the plants they study. This reduces confounding variables – inconsistent temperature or light levels, for example – that could render the results of their experiments less meaningful. To make sure that conditions really are consistent both within and between growth chambers, which minimises experimental bias and ensures that experiments are reproducible, it’s helpful to monitor and record environmental variables in the chambers.

A neat grid of small leafy plants on a black plastic tray. Metal housing and tubing is visible to the sides.

Arabidopsis thaliana in a growth chamber on the International Space Station. Many experimental plants are less well monitored than these ones.
(“Arabidopsis thaliana plants […]” by Rawpixel Ltd (original by NASA) / CC BY 2.0)

In a recent paper in Applications in Plant Sciences, Brandin Grindstaff and colleagues at the universities of Missouri and Arizona describe how they developed Growth Monitor pi, or GMpi: an affordable growth chamber monitor that provides wider functionality than other devices. As well as sensing growth conditions, it sends the gathered data to cloud storage, captures images, and generates alerts to inform scientists when conditions drift outside of an acceptable range.

The authors emphasise – and we heartily agree – that you don’t need expertise with software and computing to build, use, and adapt a system like this. They’ve written a detailed protocol and made available all the necessary software for any researcher to build GMpi, and they note that commercial solutions with similar functionality range in price from $10,000 to $1,000,000 – something of an incentive to give the DIY approach a go.

GMpi uses a Raspberry Pi Model 3B+, to which are connected temperature-humidity and light sensors from our friends at Adafruit, as well as a Raspberry Pi Camera Module.

The team used open-source app Rclone to upload sensor data to a cloud service, choosing Google Drive since it’s available for free. To alert users when growing conditions fall outside of a set range, they use the incoming webhooks app to generate notifications in a Slack channel. Sensor operation, data gathering, and remote monitoring are supported by a combination of software that’s available for free from the open-source community and software the authors developed themselves. Their package GMPi_Pack is available on GitHub.

With a bill of materials amounting to something in the region of $200, GMpi is another excellent example of affordable, accessible, customisable open labware that’s available to researchers and students. If you want to find out how to build GMpi for your lab, or just for your greenhouse, Affordable remote monitoring of plant growth in facilities using Raspberry Pi computers by Brandin et al. is available on PubMed Central, and it includes appendices with clear and detailed set-up instructions for the whole system.

The post Growth Monitor pi: an open monitoring system for plant science appeared first on Raspberry Pi.

A low-cost, open-source, computer-assisted microscope

Par : Helen Lynn

Low-cost open labware is a good thing in the world, and I was particularly pleased when micropalaeontologist Martin Tetard got in touch about the Raspberry Pi-based microscope he is developing. The project is called microscoPI (what else?), and it can capture, process, and store images and image analysis results. Martin is engaged in climate research: he uses microscopy to study tiny fossil remains, from which he gleans information about the environmental conditions that prevailed in the far-distant past.

microscoPI: a microcomputer-assisted microscope

microscoPI a project that aims to design a multipurpose, open-source and inexpensive micro-computer-assisted microscope (Raspberry PI 3). This microscope can automatically take images, process them, and save them altogether with the results of image analyses on a flash drive. It it multipurpose as it can be used on various kinds of images (e.g.

Martin repurposed an old microscope with a Z-axis adjustable stage for accurate focusing, and sourced an inexpensive X/Y movable stage to allow more accurate horizontal positioning of samples under the camera. He emptied the head of the scope to install a Raspberry Pi Camera Module, and he uses an M12 lens adapter to attach lenses suitable for single-specimen close-ups or for imaging several specimens at once. A Raspberry Pi 3B sits above the head of the microscope, and a 3.5-inch TFT touchscreen mounted on top of the Raspberry Pi allows the user to check images as they are captured and processed.

The Raspberry Pi runs our free operating system, Raspbian, and free image-processing software ImageJ. Martin and his colleagues use a number of plugins, some developed themselves and some by others, to support the specific requirements of their research. With this software, microscoPI can capture and analyse microfossil images automatically: it can count particles, including tiny specimens that are touching, analyse their shape and size, and save images and results before prompting the user for the name of the next sample.

microscoPI is compact – less than 30cm in height – and it’s powered by a battery bank secured under the base of the microscope, so it’s easily portable. The entire build comes in at under 160 Euros. You can find out more, and get in touch with Martin, on the microscoPI website.

The post A low-cost, open-source, computer-assisted microscope appeared first on Raspberry Pi.

Toilet Tracker: automated poo-spotting, no cameras

Par : Liz Upton

It might be that I am unusually particular here, but there is nothing (absolutely NOTHING) that upsets me more than dirty toilets. Yes, I know this is the epitome of a pampered-person’s phobia. But I have nightmares — honest, actual, recurring nightmares — about horrible toilets, and I’ll plan my day around avoiding public toilets which are likely to be dirty. So this project appealed to me enormously.

Obi-Wan and the Worst Toilet in Scotland

Automating spotting that things are awry in a toilet cubicle without breaching privacy is really tricky. You can’t use a camera, for obvious reasons. Over at Hackster.io, Mohammad Khairul Alam has come up with a solution: he uses a Raspberry Pi hooked up to Walabot, a 3D imaging sensor (the same sort of thing you might use to find pipes behind studwork if you’re doing DIY) to detect one thing: whether there are any…objects in the toilet cubicle which weren’t there earlier.

From a privacy point of view, this is perfect. The sensor isn’t a camera, and it doesn’t know exactly what it’s looking at: just that there’s a thing where there shouldn’t be.

The Walabot is programmed to understand when the toilet is occupied by sensing above seat level; it’s also looking closer to the floor when the cubicle is empty, for seat-smudges, full bowls, and nasty stuff on the floor. (Writing this post is making me all shuddery. Like I said, I really, really have a problem with this.) Here’s a nice back-of-an-envelope explanation of the logic:

There’s a simple Android app to accompany the setup so you can roll out your own if you have an office with an upsetting toilet.

Learn (much) more over at Hackster — thanks to Md. Khairul Alam for the build!

The post Toilet Tracker: automated poo-spotting, no cameras appeared first on Raspberry Pi.

135 teams will run their experiments on the ISS for Astro Pi Mission Space Lab 2018-19

In this year’s round of Astro Pi Mission Space Lab, 135 teams will run their experiments on the ISS!

CSA Astronaut David Saint-Jacques congratulates all the participants on behalf of ESA and the Raspberry Pi Foundation.

CSA astronaut David Saint-Jacques aboard the International Space Station – ENGLISH

CSA astronaut David Saint-Jacques introduces Phase Three of the Raspberry Pi ESA Astro Pi Challenge aboard the International Space Station. Pretty cool, right?

(Find the French version of the video at the bottom of this blog post.)

Astro Pi Challenge 2018/2019

In September of last year, the European Space Agency and Raspberry Pi Foundation launched the European Astro Pi Challenge for 2018/2019.

It offers students and young people the amazing opportunity to conduct scientific investigations in space, by writing computer programs that run on Raspberry Pi computers aboard the International Space Station.

The Challenge offers two missions: Mission Zero and Mission Space Lab.

Astro Pi Mission Space Lab

Mission Space Lab, our more advanced mission, invited teams of students and young people under 19 years of age to take part in Mission Space Lab by submitting an idea for a scientific experiment to be run on the Astro Pi units.

Astro PI IR on ISS

Teams were able to choose between two themes for their experiments: Life in space and Life on Earth. Teams that chose the ‘Life on Earth’ theme were tasked with using the Astro Pi computer Izzy, fitted with a near-infrared camera facing out of an ISS window, to study the Earth. For ‘Life in space’, teams used the Astro Pi computer Ed, which is equipped with a camera for light sensing, and investigate life inside the Columbus module of the ISS.

There are four phases to Mission Space Lab:

    • Phase 1 – Design (September- October 2018)
      • Come up with an idea for your experiment
    • Phase 2 – Create (November 2018 to March 2019)
      • Code your program and test your experiment on Earth
    • Phase 3 – Deploy (April 2019)
      • Your program is deployed on the ISS
    • Phase 4 – Analyse (May 2019)
      • Use the data from your experiment to write your report

Phases 1 and 2

During Phase 1, the Astro Pi team received a record-breaking 471 entries from 24 countries! 381 teams were selected to progress to Phase 2 and had the chance to write computer programs for the scientific experiments they wanted to send to the Astro Pi computers aboard the International Space Station

Phases 3 and 4

After a long process of testing and judging experiments, the European Space Agency and Raspberry Pi Foundation are happy to announce that a record number of 135 teams have been granted ‘flight status’ for Phase 3 of the challenge!

Astro Pi Mission Space Lab logo

53 teams with ‘Life in space’ entries and 82 teams with ‘Life on Earth’ entries have qualified for ‘Phase 3 — Deploy’ and ‘Phase 4 — Analyse’ of the European Astro Pi Challenge. The teams’ experiments were selected based on their experiment quality, their code quality, and the feasibility of their experiment idea. The selected programs have been tested on ground to ensure they will run without error on board the ISS.

The teams will receive their data back after their programs have been deployed on the International Space Station. They will then be tasked with writing a short report about their findings for the Astro Pi team. We will select the 10 best reports as the winners, and those lucky teams will be awarded a special prize!

The selected programs will run in the coming days on the ISS, overseen by CSA Astronaut David Saint-Jacques himself!

L’astronaute David Saint-Jacques de l’ASC à bord de la Station spatiale internationale – FRENCH

L’astronaute David Saint-Jacques de l’ASC présente la troisième phase du défi “Raspberry Pi ESA Astro Pi” à bord de la Station spatiale internationale Watch in English: Subscribe to our YouTube channel: http://rpf.io/ytsub Help us reach a wider audience by translating our video content: http://rpf.io/yttranslate Buy a Raspberry Pi from one

The post 135 teams will run their experiments on the ISS for Astro Pi Mission Space Lab 2018-19 appeared first on Raspberry Pi.

❌