Lateo.net - Flux RSS en pagaille (pour en ajouter : @ moi)

🔒
❌ À propos de FreshRSS
Il y a de nouveaux articles disponibles, cliquez pour rafraîchir la page.
À partir d’avant-hierRaspberry Pi

Share your tech project with the world through Coolest Projects Global 2022

It’s time for young tech creators to share with the world what they’ve made! Coolest Projects Global 2022 registration is NOW OPEN. Starting today, young people can register their technology creation on the Coolest Projects Global website, where it will be featured in the online showcase gallery for the whole world to see.

Five young coders show off their robotic garden tech project for Coolest Projects.

By registering a tech project, you’ll represent your community, and you’ll get the coolest, limited-edition swag. You may even win a prize and earn the recognition of the special project judges.

What you need to know about Coolest Projects Global

Now in its 10th year, Coolest Projects is all about celebrating young people and what they create with code. Here’s what you need to know:

  • Coolest Projects Global is completely free for all participants around the world, and it’s entirely online.
  • Coolest Projects Global is open to tech creators up to 18 years old, working independently or in teams of up to 5.
  • We welcome creators of all skill levels: this world-leading technology showcase is for young people who are coding their very first project, or who are already experienced, or anything in between.
  • You’re invited to a live online celebration, which we will live-stream in early June — more details to follow.
  • Opening today, project registration stays open until 11 May.
A young coder shows off her tech project tech project for Coolest Projects to two other young tech creators.
  • Projects can be registered in the following categories: Scratch, games, web, mobile apps, hardware, and advanced programming.
  • Judges will evaluate projects based on their coolness, complexity, design, usability, and presentation.

Why Coolest Projects Global is so cool

Here are just a few of the reasons why young tech creators should register their project for the Coolest Projects Global showcase:

  • Share your project with the world. Coolest Projects Global is the world’s leading technology showcase for young people, and it’s your chance to shine on the global stage.
  • Get feedback on your project. A great team of judges will check out your project and give you feedback, which will land in your inbox after registration closes.
  • Earn some swag. Every creator who registers a project will be eligible to receive some limited-edition digital or physical swag. Pssst… Check out the sneak peek below.
  • Win a prize. Creators of projects that are selected as the judges’ favourites in the six showcase categories will receive a Coolest Projects medal to commemorate their accomplishment. The judges’ favourites will be announced at our live online celebration in June.
Two young coders work on their tech project on a laptop to control a sewing machine for Coolest Projects.

If you don’t have a tech project or an idea for one yet, you’ve got plenty of time to imagine and create, and we’re here to support you. Check out our guides to designing and building a tech creation — one that you’ll be proud to share with the Coolest Projects community in the online showcase gallery. And there’s no shortage of inspiration among the projects that young tech creators shared in last year’s showcase gallery.

Four young coders show off their tech project for Coolest Projects.

We have a lot more exciting stuff to share about Coolest Projects Global in the coming months, so be sure to subscribe for email updates. Until next time… be cool, creators!

""
A hint at the swag Coolest Projects Global participants will receive 👀

The post Share your tech project with the world through Coolest Projects Global 2022 appeared first on Raspberry Pi.

Calling all young tech creators: Get ready for Coolest Projects Global 2022

It’s time to start your countdown! Young people from all over the world will soon be invited to share their digital creations at Coolest Projects Global 2022, our world-leading online technology showcase event for young creators. In mid-February, project registration opens for a new and improved, online-only experience.

A group of young women present a robot buggy they have built.

Through Coolest Projects Global, young creators can register their digital projects to share them with the world, represent their country, get some free swag, and maybe even win recognition from our special judges. And the best thing: Coolest Projects participants join a global community of awesome young tech creators who celebrate each other’s accomplishments.

A group of Coolest Projects participants from all over the world wave their flags.

Here’s what you should know about Coolest Projects Global

  • Coolest Projects Global is free and open to young creators up to 18 years old, working independently or in teams of up to 5 creators.
  • Creators of all skill levels are encouraged to participate. Coolest Projects is for young people who are beginners, or advanced, or anything in between.
  • Project registration opens on 14 February and stays open until 11 May.
A girl presenting a digital making project
  • Projects can be registered in the following categories: Scratch, games, web, mobile apps, hardware, and advanced programming.
  • Judges will evaluate projects based on their coolness, complexity, design, usability, and presentation.
  • Coolest Projects Global is a completely free event for all participants, and it’s entirely online.

What’s new in 2022?

Coolest Projects is celebrating its TENTH YEAR of shining a light on young creators, so we have an extra special showcase lined up in 2022. All of these enhancements are the result of incredibly helpful feedback that past creators have shared. Here’s a sneak peek at what you can look forward to:

  • Creators will receive project feedback from the judges after the celebration event in June. The celebration will be streamed live online in early June. Stay tuned for more details as the event gets closer.
  • Creators will be eligible to receive limited-edition digital and physical swag.
  • Creators will be able to categorise their project into topics such as health, environment, community, art, and more.
  • Creators who have projects selected as favourites by the special judges will receive a commemorative medal.
Two siblings presenting their digital making project at a Coolest Projects showcase

What do young people say is so cool about Coolest Projects?

We asked past creators what they think makes Coolest Projects so cool, and here’s what they had to say:

  • “The freedom we had to create whatever we want!”
  • “We can get inspiration from sharing our ideas about real-life situations.”
  • “Seeing all the different ideas people had and how they went about doing their projects.”
  • “The opportunity to let the creativity flow and participate at a global level.”

Last year, creators showcased all kinds of projects, such as an earthquake early warning device, a fun math game made with Scratch, a squirrel detection system, and a website about cybersecurity. Don’t forget, Coolest Projects is for creators who are beginners, advanced, and everything in between.

A boy participating in Coolest Projects shows off his tech project together with an adult.

Next steps

Project registration opens on 14 February, but creators can start making their projects now. For inspiration, check out last year’s project gallery and then sign up to receive email updates so that you don’t miss a thing about Coolest Projects. We have many more exciting details coming in the next weeks and months, so stay tuned.

Until next time… be cool.

Coolest Projects logo.

The post Calling all young tech creators: Get ready for Coolest Projects Global 2022 appeared first on Raspberry Pi.

How your young people can create with tech for Coolest Projects 2021

In our free Coolest Projects online showcase, we invite a worldwide community of young people to come together and celebrate what they’ve built with technology. For this year’s showcase, we’ve already got young tech creators from more than 35 countries registered, including from India, Ireland, UK, USA, Australia, Serbia, Japan, and Syria!

Two siblings presenting their digital making project at a Coolest Projects showcase

Register to become part of the global Coolest Projects community

Everyone up to age 18 can register for Coolest Projects to become part of this community with their own tech creation. We welcome all projects, all experience levels, and all kinds of projects, from the very first Scratch animation to a robot with machine learning capacity! The beauty of Coolest Projects is in the diversity of what the young tech creators make.

Young people can register projects in six categories: Hardware, Scratch, Mobile Apps, Websites, Games, and Advanced Programming. Projects need to be fully registered by Monday 3 May 2021, but they don’t need to be finished then — at Coolest Projects we celebrate works in progress just as much as finished creations!

To learn more about the registration process, watch the video below or read our guide on how to register.

Our Coolest Projects support for young people and you

Here are the different ways we’re supporting your young people — and you — with project creation!

Online resources for designing and creating projects

Download the free Coolest Projects workbook that walks young people through the whole creation process, from finding a topic or problem they want to address, to idea brainstorming, to testing their project:

The five steps you will carry out when creating a tech project: 1 Pick a problem. 2 Who are you helping with your project? 3 Generate ideas. 4 Design and build. 5 Test and tweak
Our Coolest Projects worksheets have detailed guidance about all five steps of project creation.

Explore more than 200 free, step-by-step project guides for learning coding and digital making skills that your young people can use to find help and inspiration! For more ideas on what your young people can make for Coolest Projects, have a look around last year’s online showcase gallery.

Live streams for young people

This Wednesday 3 March at 19:00 GMT / 14:00 ET, young people can join a special Digital Making at Home live stream about capturing ideas for projects. We’ll share practical tips and inspiration to help them get started with building a Coolest Projects creation:

On Tuesday 23 March, 16:00 GMT / 11:00 ET, young people can join the Coolest Projects team on a live stream to talk to them about all things Coolest Projects and ask all their questions! Subscribe to our YouTube channel and turn on notifications to be reminded about this live stream.

Online workshops for educators & parents

Join our free online workshops where you as an educator or parent can learn how to best support young people to take part:

Celebrating young people’s creativity

Getting creative with technology is truly empowering for young people, and anything your young people want to create will be celebrated by us and the whole Coolest Projects community. We’re so excited to see their projects, and we can’t wait to celebrate all together at our big live stream celebration event in June! Don’t let your young people miss their chance to be part of the fun.

Register your project for the Coolest Projects online showcase
A banner with the words "Be a Pi Day donor today"

The post How your young people can create with tech for Coolest Projects 2021 appeared first on Raspberry Pi.

Idea registration is open for Coolest Project 2021!

It’s official: idea registration is finally open for Coolest Project 2021!

Our Coolest Projects online showcase brings together a worldwide community of young people who make things with technology. Everyone up to age 18, wherever they are in the world, can register for Coolest Projects to become part of this community with their own tech creation! We welcome all ideas, all experience levels, and all kinds of projects.

So let all the young people in your family, school, or coding club know, because Coolest Projects is their chance to be part of something amazing this year!

Taking part is free, and projects will be displayed in the Coolest Projects online gallery for people all across the globe to see! And getting involved is super easy: young creators can start by registering their idea for a project now, leaving them plenty of time — until May — to build the project at home.

To celebrate the passion, effort, and creativity of all the tech creators, we will host a grand live-streamed finale event in June, where our fabulous, world-renowned judges will pick their favourites from among all the projects!

Last year, young tech creators from 39 countries took part in the Coolest Projects online showcase. This year, we hope young people from even more places will share their tech creations with the world!

Skill-building, fun & community

Coolest Projects is a powerful motivator for young people to develop skills in:

  • Idea generation
  • Project design and planning
  • Coding and technology
  • User testing and iteration
  • Presentation

…and they will have lots of fun, be inspired by their peers, and feel like they are part of a truly international community.

  • A Coolest Projects participant
  • A boy working on a Raspberry Pi robot buggy

Let their imaginations run free! 

Through the Coolest Projects online showcase, young people get the opportunity to explore their creativity and realise their tech ambitions! Whatever they come up with as a project idea, we want them to register so the Coolest Projects community can celebrate it.

To help you support young people to create their projects, we’re running a free online workshop called ‘How to design projects with young people’ on 25 February.

What happens next? 

  1. Once their project ideas are registered, the young people can start creating their projects!
  2. From the start of March, they will be able to complete their registration by adding the details of their project, including either a Scratch project link or a short video where they need to answer three important questions about their project. We’ll be offering online sessions to give them tips for their video and help them complete their showcase gallery entry.
  3. Project registration closes on 3 May. But don’t worry if a project isn’t finished by then: we welcome works in progress just as much as completed creations!

We can’t wait to see the wonderful, imaginative things young tech creators in this global community are going to share with the world!

Sign up for the Coolest Projects newsletter to never miss the latest updates about our exciting online showcase, including the free online support sessions for participants.

The post Idea registration is open for Coolest Project 2021! appeared first on Raspberry Pi.

Deep learning cat prey detector

We’ve all been able to check on our kitties’ outdoor activities for a while now, thanks to motion-activated cameras. And the internet’s favourite cat flap even live-tweets when it senses paws through the door.

A nightvision image of a cat approaching a cat flap with a mouse in its mouth

“Did you already make dinner? I stopped on the way home to pick this up for you.”

But what’s eluded us “owners” of felines up until now is the ability to stop our furry companions from bringing home mauled presents we neither want nor asked for.

A cat flap bouncer powered by deep learning

Now this Raspberry Pi–powered machine learning build, shared by reddit user u/eee_bume, can help us out: at its heart, there’s a convolutional neural network cascade that detects whether a cat is trying to enter a cat flap with something in its maw. (No word from the creators on how many half-consumed rodents the makers had to dispose of while training the machine learning model.)

The neural network first detects the whole cat in an image; then it hones in on the cat’s maw. Image classification is performed to detect whether there is anything in or around the maw. If the network thinks the cat is trying to smuggle caught contraband into the house, it’s a “no” from this virtual door bouncer.

The system runs on Raspberry Pi 4 with an infrared camera at an average detection rate of  around 1 FPS. The PC-Val value, representing the certainty of the prey classification => prey/no_prey certainty threshold, is 0.5.

The home made set up including small camera lights and sensors

The infrared camera setup, powered by Raspberry Pi

How to get enough training data

This project formed Nicolas Baumann’s and Michael Ganz’s spring semester thesis at the Swiss Federal Institute of Technology. One of the problems they ran into while trying to train their device is that cats are only expected to enter the cat flap carrying prey 3% of the time, which leads to a largely imbalanced classification problem. It would have taken a loooong time if they had just waited for Nicolas and Michael’s pets to bring home enough decomposing gifts.

Lots of different cats faces close up, some with prey in their mouths, some without

The cutest mugshots you ever did see

To get around this, they custom-built a scalable image data gathering network to simplify and maximise the collection of training data. It features multiple distributed Camera Nodes (CN), a centralised main archive, and a custom labeling tool. As a result of the data gathering network, 40GB of training data have been amassed.

What is my cat eating?!

The makers also took the time to train their neural network to classify different types of prey. So far, it recognises mice, lizards, slow-worms, and birds.

Infrared shots of one cat while the camera decides if it has prey in its mouth or not

“Come ooooon, it’s not even a *whole* mouse, let me in!”

It’s still being tweaked, but at the moment the machine learning model correctly detects when a cat has prey in its mouth 93% of the time. But it still falsely accuses kitties 28% of the time. We’ll leave it to you to decide whether your feline companion will stand for that kind of false positive rate, or whether it’s more than your job’s worth.

The post Deep learning cat prey detector appeared first on Raspberry Pi.

These loo rolls formed a choir

Have all of y’all been hoarding toilet roll over recent weeks in an inexplicable response to the global pandemic, or is that just a quirk here in the UK? Well, the most inventive use of the essential household item we’ve ever seen is this musical project by Max Björverud.

Ahh, the dulcet tones of wall-mounted toilet roll holders, hey? This looks like one of those magical ‘how do they do that?’ projects but, rest assured, it’s all explicable.

Max explains that Singing Toilet is made possible with a Raspberry Pi running Pure Data. The invention also comprises a HiFiBerry Amp, an Arduino Mega, eight hall effect sensors, and eight magnets. The toilet roll holders are controlled with the hall effect sensors, and the magnets connect to the Arduino Mega.

In this video, you can see the hall effect sensor and the 3D-printed attachment that holds the magnet:

Max measures the speed of each toilet roll with a hall effect sensor and magnet. The audio is played and sampled with a Pure Data patch. In the comments on his original Reddit post, he says this was all pretty straight-forward but that it took a while to print a holder for the magnets, because you need to be able to change the toilet rolls when the precious bathroom tissue runs out!

Max began prototyping his invention last summer and installed it at creative agency Snask in his hometown of Stockholm in December.

The post These loo rolls formed a choir appeared first on Raspberry Pi.

Using Raspberry Pi for deeper learning in education

Using deeper learning as a framework for transformative educational experiences, Brent Richardson outlines the case for a pedagogical approach that challenges students using a Raspberry Pi. From the latest issue of Hello World magazine — out today!

A benefit of completing school and entering the workforce is being able to kiss standardised tests goodbye. That is, if you don’t count those occasional ‘prove you watched the webinar’ quizzes some supervisors require.

In the real world, assessments often happen on the fly and are based on each employee’s ability to successfully complete tasks and solve problems. It is often obvious to an employer when their staff members are unprepared.

Formal education continues to focus on accountability tools that measure base-level proficiencies instead of more complex skills like problem-solving and communication.

One of the main reasons the U.S. education system is criticised for its reliance on standardised tests is that this method of assessing a student’s comprehension of a subject can hinder their ability to transfer knowledge from an existing situation to a new situation. The effect leaves students ill-prepared for higher education and the workforce.

A study conducted by the National Association of Colleges and Employers found a significant gap between how students felt about their abilities and their employer’s observations. In seven out of eight categories, students rated their skills much higher than their prospective employers had.

Some people believe that this gap continues to widen because teaching within the confines of a standardised test encourages teachers to narrow their instruction. The focus becomes preparing students with a limited scope of learning that is beneficial for testing.

With this approach to learning, it is possible that students can excel at test-taking and still struggle with applying knowledge in new ways. Educators need to have the support to not only prepare students for tests but also to develop ways that will help their students connect to the material in a meaningful manner.

In an effort to boost the U.S. education system’s ability to increase the knowledge and skills of students, many private corporations and nonprofits directly support public education. In 2010, the Hewlett Foundation went so far as to develop a framework called ‘deeper learning’ to help guide its education partners in preparing learners for success.

The principles of deeper learning

Deeper learning focuses on six key competencies:

    1. Master core academic content
    2. Think critically and solve
      complex problems
    3. Work collaboratively
    4. Communicate effectively
    5. Learn how to learn
    6. Develop academic mindsets

This framework ensures that learners are active participants in their education. Students are immersed in a challenging curriculum that requires them to seek out and acquire new information, apply what they have learned, and build upon that to create new knowledge.

While deeper learning experiences are important for all students, research shows that schools that engage students from low-income families and students of colour in deeper learning have stronger academic outcomes, better attendance and behaviour, and lower dropout rates. This results in higher graduation rates, and higher rates
of college attendance and perseverance than comparison schools serving similar students. This pedagogical approach is one we strive to embed in all our work at Fab Lab Houston.

A deeper learning timelapse project

The importance of deeper learning was undeniable when a group of students I worked with in Houston built a solar-powered time-lapse camera. Through this collaborative project, we quickly found ourselves moving beyond classroom pedagogy to a ‘hero’s journey’ — where students’ learning paths echo a centuries-old narrative arc in which a protagonist goes on an adventure, makes new friends, encounters roadblocks, overcomes adversity, and returns home a changed person.

In this spirit, we challenged the students with a simple objective: ‘Make a device to document the construction of Fab Lab Houston’. In just one sentence, participants understood enough to know where the finish line was without being told exactly how to get there. This shift in approach pushed students to ask questions as they attempted to understand constraints and potential approaches.

Students shared ideas ranging from drone video to photography robots. Together everyone began to break down these big ideas into smaller parts and better define the project we would tackle together. To my surprise, even the students that typically refused to do most things were excited to poke holes in unrealistic ideas. It was decided, among other things, that drones would be too expensive, robots might not be waterproof, and time was always a concern.

The decision was made to move forward with the stationary time-lapse camera, because although the students didn’t know how to accomplish all the aspects of the project, they could at least understand the project enough to break it down into doable parts and develop a ballpark budget. Students formed three teams and picked one aspect of the project to tackle. The three subgroups focused on taking photos and converting them to video, developing a remote power solution, and building weatherproof housing.

A group of students found sample code for Raspberry Pi that could be repurposed to take photos and store them sequentially on a USB drive. After quick success, a few ambitious learners started working to automate the image post-processing into video. Eventually, after attempting multiple ways to program the computer to dynamically turn images into video, one team member discovered a new approach: since the photos were stored with a sequential numbering system, thousands of photos could be loaded into Adobe Premiere Pro straight off the USB with the ‘Automate to Sequence’ tool in Premiere.

A great deal of time was spent measuring power consumption and calculating solar panel and battery size. Since the project would be placed on a pole in the middle of a construction site for six months, the students were challenged with making their solar-powered time-lapse camera as efficient as possible.

Waking the device after it was put into sleep mode proved to be more difficult than anticipated, so a hardware solution was tested. The Raspberry Pi computer was programmed to boot up when receiving power, take a picture, and then shut itself down. With the Raspberry Pi safely shut down, a timer relay cut power for ten minutes before returning power and starting the cycle again.

Finally, a waterproof container had to be built to house the electronics and battery. To avoid overcomplicating the process, the group sourced a plastic weatherproof ammunition storage box to modify. Students operated a 3D printer to create custom parts for the box.

After cutting a hole for the camera, a small piece of glass was attached to a 3D-printed hood, ensuring no water entered the box. On the rear of the box, they printed a part to hold and seal the cable from the solar panel where it entered the box. It only took a few sessions before the group produced a functioning prototype. The project was then placed outside for a day to test the capability of the device.

The test appeared successful when the students checked the USB drive. The drive was full of high-quality images captured every ten minutes. When the drive was connected back to Raspberry Pi, a student noticed that all the parts inside the case moved. The high temperature on the day of the test had melted the glue used to attach everything. This unexpected problem challenged students to research a better alternative and reattach the pieces.

Once the students felt confident in their device’s functionality, it was handed over to the construction crew, who installed the camera on a twenty-foot pole. The installation went smoothly and the students anxiously waited to see the results.

Less than a week after the camera went up, Houston was hit hard with the rains brought on by hurricane Harvey. The group was nervous to see whether the project they had constructed would survive. However, when they saw that their camera had survived and was working, they felt a great sense of pride.

They recognised that it was the collaborative effort of the group to problem-solve possible challenges that allowed their camera to not only survive but to capture a spectacular series of photos showing the impact of the hurricane in the location it was placed.

BakerRipleyTimeLapse2

This is “BakerRipleyTimeLapse2” by Brent Richardson on Vimeo, the home for high quality videos and the people who love them.

A worthwhile risk

Overcoming many hiccups throughout the project was a great illustration of how the students learned how to learn and
to develop an academic mindset; a setback that at the beginning of the project might have seemed insurmountable was laughable in the end.

Throughout my experience as a classroom teacher, a museum educator, and now a director of a digital makerspace, I’ve seen countless students struggle to understand the relevance of learning, and this has led me to develop a strong desire to expand the use of deeper learning.

Sometimes it feels like a risk to facilitate learning rather than impart knowledge, but seeing a student’s development into a changed person, ready to help someone else learn, makes it worth the effort. Let’s challenge ourselves as educators to help students acquire knowledge and use it.

Get your FREE copy of Hello World today

Issue 12 of Hello World is available now as a FREE PDF download. UK-based educators can also subscribe to receive Hello World directly to their door in all its shiny printed goodness. Visit the Hello World website for more information.

The post Using Raspberry Pi for deeper learning in education appeared first on Raspberry Pi.

The Nest Box: DIY Springwatch with Raspberry Pi

Par : Helen Lynn

Last week, lots and lots of you shared your Raspberry Pi builds with us on social media using the hashtag #IUseMyRaspberryPiFor. Jay Wainwright from Liverpool noticed the conversation and got in touch to tell us about The Nest Box, which uses Raspberry Pi to bring impressively high-quality images and video from British bird boxes to your Facebook feed.

Jay runs a small network of livestreaming nest box cameras, with three currently sited and another three in the pipeline; excitingly, the new ones will include a kestrel box and a barn owl box! During the spring, all the cameras stream live to The Nest Box’s Facebook page, which has steadily built a solid following of several thousand wildlife fans.

A pair of blue tits feeds their chicks in a woolly nest

The Nest Box’s setup uses a Raspberry Pi and Camera Module, along with a Raspberry Pi PoE HAT to provide both power and internet connectivity, so there’s only one cable connection to weatherproof. There’s also a custom HAT that Jay has designed to control LED lights and to govern the Raspberry Pi Camera Module’s IR filter, ensuring high-quality images both during the day and at night. To top it all off, he has written some Python code to record visitors to the nest boxes and go into live streaming mode whenever the action is happening.

As we can see from this nest box design for swifts, shown on the project’s crowdfunding profile, plenty of thought has evidently been put into the design of the boxes so that they provide tempting quarters for their feathered occupants while also accommodating all the electronic components.

Follow The Nest Box on Facebook to add British birds into your social media mix — whatever you’ve got now, I’ll bet all tomorrow’s coffees that it’ll be an improvement. And if you’re using Raspberry Pi for a wildlife project, or you’ve got plans along those lines, let us know in the comments.

The post The Nest Box: DIY Springwatch with Raspberry Pi appeared first on Raspberry Pi.

Raspberry Pi retro gaming on Reddit

Par : Alex Bate

Reddit was alive with the sound of retro gaming this weekend.

First out to bat is this lovely minimalist, wall-mounted design built by u/sturnus-vulgaris, who states:

I had planned on making a bar top arcade, but after I built the control panel, I kind of liked the simplicity. I mounted a frame of standard 2×4s cut with a miter saw. Might trim out in black eventually (I have several panels I already purchased), but I do like the look of wood.

Next up, a build with Lego bricks, because who doesn’t love Lego bricks?

Just completed my mini arcade cabinet that consists of approximately 1,000 [Lego bricks], a Raspberry Pi, a SNES style controller, Amazon Basics computer speakers, and a 3.5″ HDMI display.

u/RealMagicman03 shared the build here, so be sure to give them an upvote and leave a comment if, like us, you love Raspberry Pi projects that involve Lego bricks.

And lastly, this wonderful use of the Raspberry Pi Compute Module 3+, proving yet again how versatile the form factor can be.

CM3+Lite cartridge for GPi case. I made this cartridge for fun at first, and it works as all I expected. Now I can play more games l like on this lovely portable stuff. And CM3+ is as powerful as RPi3B+, I really like it.

Creator u/martinx72 goes into far more detail in their post, so be sure to check it out.

What other projects did you see this weekend? Share your links with us in the comments below.

The post Raspberry Pi retro gaming on Reddit appeared first on Raspberry Pi.

Controlling a boom lift with a Raspberry Pi

Par : Alex Bate

Do you have a spare Raspberry Pi lying around? And a Bluetooth games controller? Do you have access to boom lifts or other heavy machinery?

Well, then we most certainly (do not) have the project for you.

Allow us to introduce what is (possibly, probably, hopefully) the world’s first Raspberry Pi–controlled boom lift. Weighing in at 13,000lb, this is the epitome of DON’T try this at home.

Please don’t!

Raspberry Pi-controlled boom lift

Shared on Reddit over the weekend, u/Ccundiff12’s project received many an upvote and concerned comment, but, as the poster explains, hacking the boom is a personal project for personal use to fix a specific problem — thankfully not something built for the sake of having some fun.

Meet STRETCH. Circa 1989 Genie Boom that I bought (cheap) from a neighbor. I use it to trim trees around my property. Its biggest problem was that it always got stuck. It’s not really an off-road vehicle. It used to take two people to move it around… one to drive the lift, and the other to push it with the tractor when it lost traction. The last time it got stuck, I asked my wife to assist by driving one of the two…….. the next day I started splicing into the control system. Now I can push with the tractor & run the boom via remote!

Visit the original Reddit post for more information on the build. And remember: please do not try this at home.

The post Controlling a boom lift with a Raspberry Pi appeared first on Raspberry Pi.

Pulling shower thoughts from Reddit for a Raspberry Pi e-paper display

Par : Alex Bate

The Reddit users among you may already be aware of the Shower Thoughts subreddit. For those of you who aren’t, Shower Thoughts is where people go to post the random epiphanies they’ve had about life, the universe, and everything. For example:

YouTuber ACROBOTIC is a fan of the Shower Thoughts subreddit. So much so that they decided to program their Raspberry Pi to update an e-paper HAT with the subreddit’s top posts from the last hour.

Raspberry Pi 4 Scrape JSON Data w/ Python And Display It On e-Paper | reddit /r/showerthoughts

$2 for PCB prototype (any color): https://jlcpcb.com/ ========== * Your support helps me post videos more frequently: https://www.patreon.com/acrobotic https://www.paypal.me/acrobotic https://buymeacoff.ee/acrobotic BTC: 1ZpLvgETofMuzCaKoq5XJZKSwe5UNkwLM ========== * Find me on: https://twitter.com/acrobotic https://facebook.com/acrobotic https://instagram.com/acrobotic ========== * Parts & supplies: https://acrobotic.com/shop https://amazon.com/shops/acrobotic ========== In another video we setup a Raspberry Pi to control an e-Paper/e-Ink HAT and running demo code.

For their build, they used a three-colour e-paper display, but you can use any e-paper add-on for Raspberry Pi to recreate the project. They also used Raspberry Pi 4, but again, this project will work with other models — even Raspberry Pi Zero W.

ACROBOTIC created an image to frame the Shower Thoughts posts, which they uploaded to their Raspberry Pi as a .bmp file. They altered prewritten code for using the e-paper display to display this frame image and the various posts.

Adding .json to the URL of the appropriate Shower Thoughts page allows access to the posts in JSON format. Then a request can be set up to pull the data from this URL.

ACROBOTIC goes into far more detail in their video, and it’s a great resource if you’re looking to try out working with JSON files or to learn how to pull data from Reddit.

Find more projects using e-paper displays for you to recreate in our handy guide.

The post Pulling shower thoughts from Reddit for a Raspberry Pi e-paper display appeared first on Raspberry Pi.

Playing Snake on a Raspberry Pi word clock

Par : Alex Bate

I have a soft spot for Raspberry Pi word clocks. True, they may not be as helpful as your standard clock face if you need to tell the time super quickly, but at least they’re easier to read than this binary clock built by engineerish.

“But Alex,” I hear you cry, “word clocks are so done. We’re over them. They’re so 2018. What’s so special about a word clock that you feel it to be worthy of a blog post?”

And the answer, dear reader, is Snake, the best gosh darn game to ever grace the screen of a mobile phone, ever — sorry, Candy Crush.

If you’re looking to build a word clock using your Raspberry Pi, here’s a great tutorial from Benedikt Künzel. And, if you’re looking to upgrade said word clock to another level and introduce it to Snake, well, actually, there isn’t a tutorial for that, yet, but there’s a whole conversation going on about it on Reddit, so you should check that out.

There is, however, a tutorial for coding your own game of Snake Slug on the Raspberry Pi Sense HAT here. So give that a whirl!

Until tomorrow, fair reader, adieu.

The post Playing Snake on a Raspberry Pi word clock appeared first on Raspberry Pi.

Raspberry Pi mineral oil tank with added pizzazz

Par : Alex Bate

This isn’t the first mineral oil bath we’ve seen for the Raspberry Pi, but it’s definitely the first we’ve seen with added fish tank decorations.

Using the see-through casing of an old Apple PowerMac G4, Reddit user u/mjh2901 decided to build a mineral oil tank for their Raspberry Pi, and it looks fabulous. Renamed Apple Pi, this use of mineral oil is a technique used by some to manage the heat produced by tech. Oil is able to transfer heat up to five times more efficiently than air, with some mineral oil projects using a separate radiator to dissipate the heat back into the air.

So, how did they do it?

“Started with a PowerMac G4 case I previously used as a fish tank, then a candy dish. I had cut a piece of acrylic and glued it into the bottom.”

They then placed a Raspberry Pi 3 attached to a 2-line 16 character LCD into the tank, along with various decorations, and began to fill with store-bought mineral oil. Once full, the project was complete, the Raspberry Pi forever submerged.

You can find more photos here. But, one question still remains…

…who would use an old fish tank as a candy bowl?! 🤢

The post Raspberry Pi mineral oil tank with added pizzazz appeared first on Raspberry Pi.

Take the Wizarding World of Harry Potter home with you

Par : Alex Bate

If you’ve visited the Wizarding World of Harry Potter and found yourself in possession of an interactive magic wand as a souvenir, then you’ll no doubt be wondering by now, “What do I do with it at home though?”

While the wand was great for setting off window displays at the park itself, it now sits dusty and forgotten upon a shelf. But it still has life left in it — let Jasmeet Singh show you how.

Real Working Harry Potter Wand With Computer Vision and ML

A few months back my brother visited Japan and had real wizarding experience in the Wizarding World of Harry Potter at the Universal Studios made possible through the technology of Computer Vision. At the Wizarding World of Harry Potter in Universal Studios the tourists can perform “real magic” at certain locations(where the motion capture system is installed) using specially made wands with retro-reflective beads at the tip.

How do Harry Potter interactive wands work?

The interactive displays at Universal Studios’ Wizarding World of Harry Potter have infrared cameras in place, which are ready to read the correct movements of retroflector-tipped wands. Move your wand in the right way, and the cameras will recognise your spell and set window displays in motion. Oooooo…magic!

How do I know this? Thanks to William Osman and Allen Pan, who used this Wizarding World technology to turn cheap hot dogs into their own unique wands! Those boys…

Hacking Wands at Harry Potter World

How to make your very own mostly-functional interactive wand. Please don’t ban me from Universal Studios. Links on my blog: http://www.williamosman.com/2017/12/hacking-harry-potter-wands.html Allen’s Channel: https://www.youtube.com/channel/UCVS89U86PwqzNkK2qYNbk5A Support us on Patreon: https://www.patreon.com/williamosman Website: http://www.williamosman.com/ Facebook: https://www.facebook.com/williamosmanscience/ InstaHam: https://www.instagram.com/crabsandscience/ CameraManJohn: http://www.johnwillner.com/

For his Raspberry Pi-enabled wand project, Jasmeet took that same Wizarding World concept to create a desktop storage box that opens and closes in response to the correct flicks of a wand.

A simple night vision camera can be used as our camera for motion capture as they also blast out infrared light which is not visible to humans but can be clearly seen with a camera that has no infrared filter.

So, the video stream from the camera is fed into a Raspberry Pi which has a Python program running OpenCV which is used for detecting, isolating and tracking the wand tip. Then we use SVM (Simple Vector Machine) algorithm of machine learning to recognize the pattern drawn and accordingly control the GPIOs of the raspberry pi to perform some activities.

For more information on the project, including all the code needed to get started, head over to hackster.io to find Jasmeet’s full tutorial.

The post Take the Wizarding World of Harry Potter home with you appeared first on Raspberry Pi.

Really awesome Raspberry Pi 4 X-ray radiographs

Par : Alex Bate

“I got my Pi in the post yesterday morning and I was desperately waiting until the end of the workday to get home and play with it! Took a few quick radiographs before I left because I had to.”

And we’re really happy that Reddit user xCP23x did. How cool are these?

“I work for a company that makes microfocus X-ray/CT systems!” xCP23x explained in their Reddit post. “Most of the images are from a 225kV system (good down to 3 microns).”

They used a Nikon XT H 225 ST: 225kV 225W X-ray source for the majority of the images. You can learn more about how the images were produced via the comments on their Reddit user page.

You can see the full Reddit post here, and more radiographs of the Raspberry Pi 4 here.

The post Really awesome Raspberry Pi 4 X-ray radiographs appeared first on Raspberry Pi.

Raspberry Pi-controlled brass bell for the ultimate wake-up call

Par : Alex Bate

Not one for rising with the sun, and getting more and more skilled at throwing their watch across the room to snooze their alarm, Reddit user ravenspired decided to hook up a physical bell to a Raspberry Pi and servo motor to create the ultimate morning wake-up call.

DIY RASPBERRY PI BELL RINGING ALARM CLOCK!

This has to be the harshest thing to wake up to EVER!

Wake up, Boo

“I have difficulty waking up in the morning” admits ravenspired, who goes by the name Darks Pi on YouTube. “My watch isn’t doing its job.”

Therefore, ravenspired attached a bell to a servo motor, and the servo motor to a Raspberry Pi. Then they wrote Python code in Raspbian’s free IDE software Thonny that rings the bell when it’s time to get up.

“A while loop searches for what time it is and checks it against my alarm time. When the alarm is active, it sends commands to the servo to move.”

Ouch!

While I’d be concerned about how securely attached the heavy brass bell above my head is, this is still a fun project, and an inventive way to address a common problem.

And it’s a lot less painful than this…

The Wake-up Machine TAKE #2

I built an alarm clock that slapped me in the face with a rubber arm to wake me up.I built an alarm clock that wakes me up in the morning by slapping me in the face with a rubber arm.

Have you created a completely over-engineered solution for a common problem? Then we want to see it!

The post Raspberry Pi-controlled brass bell for the ultimate wake-up call appeared first on Raspberry Pi.

Bind MIDI inputs to LED lights using a Raspberry Pi

Par : Alex Bate

Blinky lights and music created using a Raspberry Pi? Count us in! When Aaron Chambers shared his latest project, Py-Lights, on Reddit, we were quick to ask for more information. And here it is:

[Seizure Warning] Raspberry Pi MIDI LED demo

A demo for controlling LEDs on a Raspberry Pi Song: Bassnectar – Chasing Heaven https://github.com/aaron64/py-lights

Controlling lights with MIDI commands

Tentatively titled Py-Lights, Aaron’s project allows users to assign light patterns to MIDI actions, creating a rather lovely blinky light display.

For his example, Aaron connected a MIDI keyboard to a strip of RGB LEDs via a Raspberry Pi that ran his custom Python code.

Aaron explains on Reddit:

The program I made lets me bind “actions” (strobe white, flash blue, disable all colors, etc.) to any input and any input type (hold, knob, trigger, etc.). And each action type has a set of parameters that I bind to the input. For example, I have a knob that changes a strobe’s intensity, and another knob that changes its speed.

The program updates each action, pulls its resulting color, and adds them together, then sends that to the LEDs. I’m using rtmidi for reading the midi device and pigpio for handling the LED output.

Aaron has updated the Py-Lights GitHub repo for the project to include a handy readme file and a more stable build.

The post Bind MIDI inputs to LED lights using a Raspberry Pi appeared first on Raspberry Pi.

❌