Lateo.net - Flux RSS en pagaille (pour en ajouter : @ moi)

🔒
❌ À propos de FreshRSS
Il y a de nouveaux articles disponibles, cliquez pour rafraîchir la page.
À partir d’avant-hierRaspberry Pi

A Raspberry Pi-powered platform for remote play experiences

Before we meet Stan Dmitriev of Surrogate.tv on this week’s Digital Making at Home live stream, we decided to learn more about the platform so we can get excited ahead of time.

Robots, cat lasers, consoles and more

Surrogate.tv is a platform for remote play experiences. That’s where creators hook up things like robots, consoles, RC cars, cat lasers, or anything else they can imagine to the internet, and let anyone in the world connect to them and control them remotely. And it’s all done using a Raspberry Pi.

surrogate.tv oktoberfest pinball machine
The infamous Oktoberfest Pinball Machine

Last year The MagPi Magazine covered Surrogate.tv‘s Oktoberfest Pinball Machine. This allowed anyone from anywhere in the world to queue up and play a real physical pinball machine over the internet. A single Raspberry Pi 4B powered the whole set up, which combined and encoded two camera feeds into a single low-latency stream for the players, and let them fully control the pinball machine with the help of a custom Raspberry Pi HAT.

Cloud gaming

The goal of the project was to showcase what’s possible with Surrogate.tv’s streaming and robotics control SDK, called SurroRTG. At the time, the SDK was still in development, but since then it has become available for anyone to use to create remote operation and cloud gaming experiences with Raspberry Pi. 

Surrogate.tv studio
The Surrogate.tv studio looks like a cool place to be

For both beginners and confident programmers

For people who aren’t confident with coding, the team is constantly adding new game templates to their open-source Python SDK, which allows creators to easily connect things to the platform. Templates include robots like Sphero RVR, consoles such as Nintendo Switch, relay boards (to control anything that has buttons, like a pinball machine or a handheld remote control), and an RC Car game template.

Creators with more programming experience can follow the documentation and hook up just about anything to the internet by integrating their own device with the SurroRTG Python SDK. The process steps are well-described in the SDK’s documentation, and it can be accessed freely from GitHub.

Team surrogate.tv
Hi, Team Surrogate.tv!

Remote drone racing

“So far creators have been really going all-in with their projects on the platform. One user, Carlitto, created a drone racing game and enabled his friend from New Zealand to fly a drone in the UK from literally another side of the world. Another creator, Mordecai, hooked their Nintendo Switch console to Surrogate.tv and using the Raspberry Pi 4 compute capabilities added 60+ custom image recognition events to track different custom achievements in Zelda Breath of the Wild, making it a challenging and fun experience for the players.

Overall, it’s amazing what people have been up to already, and we can’t wait to see what other awesome projects creators will come up with in the coming months.”

Stan Dmitriev CMO at Surrogate.tv
surrogate.tv nintendo switch
Surrogate.tv makes playing Nintendo Switch even more fun

To help creators with their projects, the company has also launched a new monthly initiative called “Creators Fund”. Every month, the team covers the costs of ten projects for creators who have the skills and a great idea, but don’t have the hardware to make it happen.

Fancy having a play? To get started with Surrogate’s SDK, all you need is a Raspberry Pi 3 or 4, a 16GB SD card, a Raspberry Pi camera or a USB webcam, and around 20 minutes of your time. Start off at surrogate.tv/creators.

Watch Stan live on Digital Making at Home this Wednesday

This is the kind of fun you can expect on Digital Making at Home

Join young people from all over the world on the Raspberry Pi Foundation’s weekly live stream. Chat, code together, hear from cool people, and see amazing digital making projects.

Subscribe on YouTube to get notifications when we go live, or watch on FacebookTwitter, and Twitch.

The post A Raspberry Pi-powered platform for remote play experiences appeared first on Raspberry Pi.

Deter burglars with a Raspberry Pi chatbot

How to improve upon the standard burglar deterring method of leaving lights switched on? Dennis Mellican turned to Raspberry Pi for a much more effective solution. It actually proved too effective when a neighbour stopped by, but more on that in a bit.

Here you can see Dennis’s system in action scaring off a trespasser:

Good job, Raspberry Pi chatbots!

The burglar deterrent started out as Dennis’s regular home automation system. Not content with the current software offerings, and having worked in DevOps, Dennis decided to create his own solution. Enter Raspberry Pi (well, several of them).

Chatterboxes

Dennis has multiple Raspberry Pi–powered devices dotted around his home, doing things such as turning on lights, powering up a garden sprinkler, and playing fake dog barks on wireless speakers. All these burglar deterrents work together and are run by a chat bot.

A simulation of the chatbots responding to Dennis’ commands

Each Raspberry Pi controls a single automated item in Dennis’s home. All the Raspberry Pis communicate with each other via Slack. Dennis issues commands if he, for example, wants lights to turn on while he is away, but the Raspberry Pis can also talk to each other when a trigger event occurs, such as when a motion sensor is tripped.

Smart sound

speaker, chromecast device, cctv camera and the Raspberry Pi connected for the anti burglary chatbot
Speaker, Google Chromecast, CCTV camera and Raspberry Pi

Google Chromecast enables ‘dumb’ speakers to be smart. Dennis has such speakers set up inside, close to windows at the front and back of the house, and they play an .mp3 file of a fake dog bark when commanded.

The security cameras Dennis uses in his home setup are a wireless CCTV variety, and the lights are a mix of TP-Link and Lifx smart bulbs.

Here’s all the Python code running Dennis’ entire security system.

Too effective?

Dennis’s smart system has backfired on him a few times. Once a neighbour visited while he was out and thought Dennis was rudely not answering the door, because she saw the lights go on inside, making it appear like he was home. Awkward.

The fake dog barking has also startled the postman and a few joggers — Dennis says it adds to the realism.

You’re cute, but you wreck stuff, so get out

The troupe of Raspberry Pis has also scared away an Australian possum (video above). These critters are notorious for making nests in roof cavities, so Dennis dodged another problematic home invasion there.

Future upgrades

Dennis is a maker after our own hearts when explaining where he’d like to go next with his anti-burglary build:

“I feel like Kevin McCallister from Home Alone, with these home security ‘traps’. I’m still waiting to catch the Wet Bandits for the sequel to this story. So far only stray cats have been caught by the sprinkler. Perhaps the next adventure of the chat bot is to order pizza and have Gangster ‘Johnny’ complete the transaction when the pizza delivery triggers the sensors.”

Go for it, Dennis!

The post Deter burglars with a Raspberry Pi chatbot appeared first on Raspberry Pi.

Global sunrise/sunset Raspberry Pi art installation

24h Sunrise/Sunset is a digital art installation that displays a live sunset and sunrise happening somewhere in the world with the use of CCTV.

Image by fotoswiss.com

Artist Dries Depoorter wanted to prove that “CCTV cameras can show something beautiful”, and turned to Raspberry Pi to power this global project.

Image by fotoswiss.com

Harnessing CCTV

The arresting visuals are beamed to viewers using two Raspberry Pi 3B+ computers and an Arduino Nano Every that stream internet protocol (IP) cameras with the use of command line media player OMXPlayer.

Dual Raspberry Pi power

The two Raspberry Pis communicate with each other using the MQTT protocol — a standard messaging protocol for the Internet of Things (IoT) that’s ideal for connecting remote devices with a small code footprint and minimal network bandwidth.

One of the Raspberry Pis checks at which location in the world a sunrise or sunset is happening and streams the closest CCTV camera.

The insides of the sleek display screen…

Beam me out, Scotty

The big screens are connected with the I2C protocol to the Arduino, and the Arduino is connected serial with the second Raspberry Pi. Dries also made a custom printed circuit board (PCB) so the build looks cleaner.

All that hardware is powered by an industrial power supply, just because Dries liked the style of it.

…and the outside

Software

Everything is written in Python 3, and Dries harnessed the Python 3 libraries BeautifulSoup, Sun, Geopy, and Pytz to calculate sunrise and sunset times at specific locations. Google Firebase databases in the cloud help with admin by way of saving timestamps and the IP addresses of the cameras.

Hardware

The artist stood infront of the two large display screens
Image of the artist with his work by fotoswiss.com

And, lastly, Dries requested a shoutout for his favourite local Raspberry Pi shop Gotron in Ghent.

If you’d like to check out more of Dries’ work, you can find him online here or on Instagram.

The post Global sunrise/sunset Raspberry Pi art installation appeared first on Raspberry Pi.

Build your own Raspberry Pi night vision camera

Par : Alex Bate

A Raspberry Pi Zero W, Pimoroni HyperPixel screen, and Raspberry Pi IR Camera Module are all you need to build this homemade night vision camera.

How to build a night vision camera

How to build a night vision camera, video showing the process and problems that I came across when building this camera

Raspberry Pi night vison camera

Built into the body of an old camera flash, Dan’s Raspberry Pi night vision camera is a homage to a childhood spent sneaking around the levels of Splinter Cell. Says Dan:

The iconic image from the game is the night vision goggles that Sam Fisher wears. I have always been fascinated by the idea that you can see in the dark and this formed the foundation of my idea to build a portable hand-held night vision piece of equipment.

The camera, running on Raspbian, boasts several handy functions, including touchscreen controls courtesy of the Pimoroni HyperPixel, realtime video and image capture, and a viewing distance of two to five metres.

It’s okay to FAIL

Embracing the FAIL (First Attempt In Learning) principle, Dan goes into detail about the issues he had to overcome while building the camera, which is another reason why we really enjoyed this project. It’s okay to fail when trying your hand at digital making, because you learn from your mistakes! Dan’s explanations of the struggles he faced and how he overcame them are 👌.

For a full rundown of the project and tips on building your own, check out its Hackster.io page.

The post Build your own Raspberry Pi night vision camera appeared first on Raspberry Pi.

LED Matrix Cylinder — a blinkenlights tube

Par : Liz Upton

We see lots of addressable LED projects, but there was something weirdly charming and very pretty about this cylinder of squares. It’d make for a lovely interactive nightlight in a kids’ room, or for a grown-up lighting feature that you could also use as a news ticker or something that monitors your in-home IoT devices. Once you’ve built something like this, you’re only limited by your imagination — and it’s nice enough to display in your home.

This project is from makeTVee on Instructables. The cleverness is in the layout and the really meticulous execution: vertical strips of LEDs form a cylinder in a laser-cut frame, with a very thin layer of wood veneer glued around the whole thing to act as a diffuser. It’s simple, but really rather beautiful and very effective.

diffuser, diffusing

In the case to the side is the Raspberry Pi Zero that’s driving the whole thing. Here it is doing its thing:

LED matrix cylinder WS2812 Raspberry Pi Zero

LED matrix cylinder based on WS2812 LEDs and some laser cutter parts. https://hackaday.io/project/162035-led-matrix-cylinder https://www.instructables.com/id/LED-Matrix-Cylinder/ #WS2812 #LEDcylinder

makeTVee has built a Pygame-based simulator of the whole matrix so you can program it to do exactly what you want: scroll marquee text, make pretty patterns, twinkle at random, display images: the world’s your (pixellated) oyster. The code’s available at GitHub.

GUI for programming cylinder

Thanks, makeTVee — if you’d like to leave your real name below, we’ll credit you properly here!

The post LED Matrix Cylinder — a blinkenlights tube appeared first on Raspberry Pi.

Upcycle a vintage TV with the Raspberry Pi TV HAT | The MagPi #78

When Martin Mander’s portable Hitachi television was manufactured in 1975, there were just three UK channels and you’d need to leave the comfort of your sofa in order to switch between them.

A page layout of the upcycled vintage television project using the Raspberry Pi TV HAT from The MagPi issue 78

Today, we have multiple viewing options and even a cool Raspberry Pi TV HAT that lets us enjoy DVB-T2 broadcasts via a suitable antenna. So what did nostalgia-nut Martin decide to do when he connected his newly purchased TV HAT to the Pi’s 40-pin GPIO header? Why, he stuck it in his old-fashioned TV set with a butt-busting rotary switch and limited the number of channels to those he could count on one hand – dubbing it “the 1982 experience” because he wanted to enjoy Channel 4 which was launched that year.

Going live

Martin is a dab hand at CRT television conversions (he’s created six since 2012, using monitors, photo frames, and neon signs to replace the displays). “For my latest project, I wanted to have some fun with the new HAT and see if I’d be able to easily display and control its TV streams on some of my converted televisions,” he says. It’s now being promoted to his office, for some background viewing as he works. “I had great fun getting the TV HAT streams working with the rotary dial,” he adds.

Raspberry Pi TV HAT

The project was made possible thanks to the new Raspberry Pi TV HAT

Although Martin jumped straight into the HAT without reading the instructions or connecting an aerial, he eventually followed the guide and found getting it up-and-running to be rather straightforward. He then decided to repurpose his Hitachi Pi project, which he’d already fitted with an 8-inch 4:3 screen.

Upcycled television using the Raspberry Pi TV HAT

The boards, screen, and switches installed inside the repurposed Hitachi television

“It’s powered by a Pi 3 and it already had the rotary dial set up and connected to the GPIO,” he explains. “This meant I could mess about with the TV HAT, but still fall back on the original project’s script if needed, with no hardware changes required.”

Change the channel

Indeed, Martin’s main task was to ensure he could switch channels using the rotary dial and this, he says, was easier to achieve than he expected. “When you go to watch a show from the Tvheadend web interface, it downloads an M3U playlist file for you which you can then open in VLC or another media player,” he says.

Upcycled television using the Raspberry Pi TV HAT

– The Hitachi television is fitted with a Pimoroni 8-inch 4:3 screen and a Raspberry Pi 3
– Programmes stream from a Pi 2 server and the channels are changed by turning the dial
– The name of the channel briefly appears at the bottom of the screen – the playlist files are edited in Notepad

“At first, I thought the playlist file was specific to the individual TV programme, as the show’s name is embedded in the file, but actually each playlist file is specific to the channel itself, so it meant I could download a set of playlists, one per channel, and store them in a folder to give me a full range of watching options.”

Sticking to his theme, he stored playlists for the four main channels of 1982 (BBC1, BBC2, ITV, and Channel 4) in a folder and renamed them channel1, channel2, channel3, and channel4.

Upcycled television using the Raspberry Pi TV HAT

A young Martin Mander decides the blank screen of his black and white Philips TX with six manual preset buttons is preferable to the shows (but he’d like to convert one of these in the future)

“Next, I created a script with an infinite loop that would look out for any action on the GPIO pin that was wired to the rotary dial,” he continues. “If the script detects that the switch has been moved, then it opens the first playlist file in VLC, full-screen. The next time the switch moves, the script loops around and adds ‘1’ to the playlist name, so that it will open the next one in the folder.”

Martin is now planning the next stage of the project, considering expanding the channel-changing script to include streams from his IP cameras, replacing a rechargeable speaker with a speaker HAT, and looking to make the original volume controls work with the Pi’s audio. “It been really satisfying to get this project working, and there are many possibilities ahead,” he says.

More from The MagPi magazine

The MagPi magazine issue 78 is out today. Buy your copy now from the Raspberry Pi Press store, major newsagents in the UK, or Barnes & Noble, Fry’s, or Micro Center in the US. Or, download your free PDF copy from The MagPi magazine website.

The MagPi magazine issue 78

Subscribe now

Subscribe to The MagPi magazine on a monthly, quarterly, or twelve-month basis to save money against newsstand prices!

Twelve-month print subscribers get a free Raspberry Pi 3A+, the perfect Raspberry Pi to try your hand at some of the latest projects covered in The MagPi magazine.

The post Upcycle a vintage TV with the Raspberry Pi TV HAT | The MagPi #78 appeared first on Raspberry Pi.

Bike dashcam from RaspiTV

Par : Liz Upton

It’s that time of year again: Pi Towers is locking its doors as we all scoot off into the night to spend some time with our families. There will be a special post on Christmas Day for people who have been given a new Raspberry Pi and need some pointers for getting started. Normal service will resume when we’ve dealt with our New Year headaches: until then, have a wonderful Christmas holiday!

Our good friend Alex Eames has been live-blogging a new project over the last week or so, and has just wrapped up. (Seasonal pun. Not sorry.) He’s recently been bitten by the cycling bug.

I’ve ridden about 1100 miles in the last 6 months and have learned enough to bore you to death with talk of heart zones and various items of clothing you can buy to make winter rides more bearable.

Here is Darth Alex demonstrating fashion-forward winter 2018 cycling wear.

Moving swiftly on.

Alex has been working on a dashcam for his bike, mostly intended for use as a rear-view “mirror”, but also to work as an evidence-collecting camera in case of any accidents.

dashcam test

This is really one of the most interesting and enjoyable project write-ups we’ve come across in a while: working on this dashcam as a daily live blog means that Alex has been able to take us down all the rabbit holes he investigated, explain changes of direction and dead ends, and show us exactly how the design and engineering process came together. And this, being an Alex project, has great attention to detail; he made custom mounts for his bike to keep everything as unobtrusive as possible, so it looks great as well.

There’s a ton of detail on hardware (which went through several iterations before Alex settled on something he was happy with), software, implementation, unexpected hiccups, and more. And if you’re someone who would rather skip to the end, here’s Alex’s road test.

Raspberry Pi Bike Dashcam Rearview Mirror Road Test – no audio

First and second road tests of my Raspberry Pi Rearview mirror/Dashcam bike project as blogged here https://raspi.tv/2018/making-a-fairly-simple-bike-dashcam-live-project-blog

I really hope we’ll see more write-ups like this one in 2019. We don’t get to read as much about other project makers’ process as we’d like to; it’s really fascinating to get a glimpse into the way someone else thinks about and approaches a problem.

The post Bike dashcam from RaspiTV appeared first on Raspberry Pi.

❌